5,415 research outputs found

    Rotational speed control of multirotor UAV's propulsion unit based on fractional-order PI controller

    Get PDF
    In this paper the synthesis of a rotational speed closed-loop control system based on a fractional-order proportional-integral (FOPI) controller is presented. In particular, it is proposed the use of the SCoMR-FOPI procedure as the controller tuning method for an unmanned aerial vehicle’s propulsion unit. In this framework, both the Hermite-Biehler and Pontryagin theorems are used to predefine a stability region for the controller. Several simulations were conducted in order to try to answer the questions – is the FOPI controller good enough to be an alternative to more complex FOPID controllers? In what circumstances can it be advantageous over the ubiquitous PID? How robust this fractional-order controller is regarding the parametric uncertainty of considered propulsion unit model?info:eu-repo/semantics/publishedVersio

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Voltage Stability Analysis of Grid-Connected Wind Farms with FACTS: Static and Dynamic Analysis

    Get PDF
    Recently, analysis of some major blackouts and failures of power system shows that voltage instability problem has been one of the main reasons of these disturbances and networks collapse. In this paper, a systematic approach to voltage stability analysis using various techniques for the IEEE 14-bus case study, is presented. Static analysis is used to analyze the voltage stability of the system under study, whilst the dynamic analysis is used to evaluate the performance of compensators. The static techniques used are Power Flow, V–P curve analysis, and Q–V modal analysis. In this study, Flexible Alternating Current Transmission system (FACTS) devices- namely, Static Synchronous Compensators (STATCOMs) and Static Var Compensators (SVCs) - are used as reactive power compensators, taking into account maintaining the violated voltage magnitudes of the weak buses within the acceptable limits defined in ANSI C84.1. Simulation results validate that both the STATCOMs and the SVCs can be effectively used to enhance the static voltage stability and increasing network loadability margin. Additionally, based on the dynamic analysis results, it has been shown that STATCOMs have superior performance, in dynamic voltage stability enhancement, compared to SVCs

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft

    Integrated design and control of chemical processes : part I : revision and clasification

    Get PDF
    [EN] This work presents a comprehensive classification of the different methods and procedures for integrated synthesis, design and control of chemical processes, based on a wide revision of recent literature. This classification fundamentally differentiates between “projecting methods”, where controllability is monitored during the process design to predict the trade-offs between design and control, and the “integrated-optimization methods” which solve the process design and the control-systems design at once within an optimization framework. The latter are revised categorizing them according to the methods to evaluate controllability and other related properties, the scope of the design problem, the treatment of uncertainties and perturbations, and finally, the type the optimization problem formulation and the methods for its resolution.[ES] Este trabajo presenta una clasificación integral de los diferentes métodos y procedimientos para la síntesis integrada, diseño y control de procesos químicos. Esta clasificación distingue fundamentalmente entre los "métodos de proyección", donde se controla la controlabilidad durante el diseño del proceso para predecir los compromisos entre diseño y control, y los "métodos de optimización integrada" que resuelven el diseño del proceso y el diseño de los sistemas de control a la vez dentro de un marco de optimización. Estos últimos se revisan clasificándolos según los métodos para evaluar la controlabilidad y otras propiedades relacionadas, el alcance del problema de diseño, el tratamiento de las incertidumbres y las perturbaciones y, finalmente, el tipo de la formulación del problema de optimización y los métodos para su resolución

    Reliability-based economic model predictive control for generalized flow-based networks including actuators' health-aware capabilities

    Get PDF
    This paper proposes a reliability-based economic model predictive control (MPC) strategy for the management of generalized flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamically allocate safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the considered case study.Peer ReviewedPostprint (author's final draft

    Fractional Order Controller Designing with Firefly Algorithm and Parameter Optimization for Hydroturbine Governing System

    Get PDF
    A fractional order PID (FOPID) controller, which is suitable for control system designing for being insensitive to the variation in system parameter, is proposed for hydroturbine governing system in the paper. The simultaneous optimization for several parameters of controller, that is, Ki, Kd, Kp, λ, and μ, is done by a recently developed metaheuristic nature-inspired algorithm, namely, the firefly algorithm (FA), for the first time, where the selecting, moving, attractiveness behavior between fireflies and updating of brightness, and decision range are studied in detail to simulate the optimization process. Investigation clearly reveals the advantages of the FOPID controller over the integer controllers in terms of reduced oscillations and settling time. The present work also explores the superiority of FA based optimization technique in finding optimal parameters of the controller. Further, convergence characteristics of the FA are compared with optimum integer order PID (IOPID) controller to justify its efficiency. What is more, analysis confirms the robustness of FOPID controller under isolated load operation conditions
    corecore