8 research outputs found

    Semiautomatic mammographic parenchymal patterns classification using multiple statistical features.

    Get PDF
    RATIONALE AND OBJECTIVES: Our project was to investigate a complete methodology for the semiautomatic assessment of digital mammograms according to their density, an indicator known to be correlated to breast cancer risk. The BI-RADS four-grade density scale is usually employed by radiologists for reporting breast density, but it allows for a certain degree of subjective input, and an objective qualification of density has therefore often been reported hard to assess. The goal of this study was to design an objective technique for determining breast BI-RADS density. MATERIALS AND METHODS: The proposed semiautomatic method makes use of complementary pattern recognition techniques to describe manually selected regions of interest (ROIs) in the breast with 36 statistical features. Three different classifiers based on a linear discriminant analysis or Bayesian theories were designed and tested on a database consisting of 1408 ROIs from 88 patients, using a leave-one-ROI-out technique. Classifications in optimal feature subspaces with lower dimensionality and reduction to a two-class problem were studied as well. RESULTS: Comparison with a reference established by the classifications of three radiologists shows excellent performance of the classifiers, even though extremely dense breasts continue to remain more difficult to classify accurately. For the two best classifiers, the exact agreement percentages are 76% and above, and weighted kappa values are 0.78 and 0.83. Furthermore, classification in lower dimensional spaces and two-class problems give excellent results. CONCLUSION: The proposed semiautomatic classifiers method provides an objective and reproducible method for characterizing breast density, especially for the two-class case. It represents a simple and valuable tool that could be used in screening programs, training, education, or for optimizing image processing in diagnostic tasks

    Eye Tracking Methods for Analysis of Visuo-Cognitive Behavior in Medical Imaging

    Get PDF
    Predictive modeling of human visual search behavior and the underlying metacognitive processes is now possible thanks to significant advances in bio-sensing device technology and machine intelligence. Eye tracking bio-sensors, for example, can measure psycho-physiological response through change events in configuration of the human eye. These events include positional changes such as visual fixation, saccadic movements, and scanpath, and non-positional changes such as blinks and pupil dilation and constriction. Using data from eye-tracking sensors, we can model human perception, cognitive processes, and responses to external stimuli. In this study, we investigated the visuo-cognitive behavior of clinicians during the diagnostic decision process for breast cancer screening under clinically equivalent experimental conditions involving multiple monitors and breast projection views. Using a head-mounted eye tracking device and a customized user interface, we recorded eye change events and diagnostic decisions from 10 clinicians (three breast-imaging radiologists and seven Radiology residents) for a corpus of 100 screening mammograms (comprising cases of varied pathology and breast parenchyma density). We proposed novel features and gaze analysis techniques, which help to encode discriminative pattern changes in positional and non-positional measures of eye events. These changes were shown to correlate with individual image readers' identity and experience level, mammographic case pathology and breast parenchyma density, and diagnostic decision. Furthermore, our results suggest that a combination of machine intelligence and bio-sensing modalities can provide adequate predictive capability for the characterization of a mammographic case and image readers diagnostic performance. Lastly, features characterizing eye movements can be utilized for biometric identification purposes. These findings are impactful in real-time performance monitoring and personalized intelligent training and evaluation systems in screening mammography. Further, the developed algorithms are applicable in other application domains involving high-risk visual tasks

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Infective/inflammatory disorders

    Get PDF
    corecore