4,822 research outputs found

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS

    Get PDF
    A 24-GHz +14.5-dBm fully integrated power amplifier with on-chip 50-[ohm] input and output matching is demonstrated in 0.18-μm CMOS. The use of substrate-shielded coplanar waveguide structures for matching networks results in low passive loss and small die size. Simple circuit techniques based on stability criteria derived result in an unconditionally stable amplifier. The power amplifier achieves a power gain of 7 dB and a maximum single-ended output power of +14.5-dBm with a 3-dB bandwidth of 3.1 GHz, while drawing 100 mA from a 2.8-V supply. The chip area is 1.26 mm^2

    Analysis of Platform Noise Effect on Performance of Wireless Communication Devices

    Get PDF

    Implementation of packaged integrated antenna with embedded front end for Bluetooth applications

    No full text
    The design, integration and realization of system in enhanced package approach towards fully functional system level integration by using a compact Bluetooth USB dongle as the demonstrator is presented here. The integration was done on FR4 substrates, which is totally compatible with today’s printed circuit board manufacturing capability. A commercially available Bluetooth integrated chip was chosen as the chipset of our demonstrator, and a package integrated antenna together with an embedded front end completes the system in package integration. The front end developed here is based on an embedded meander line combline filter and an embedded transformer balun. The filter has a 35% area reduction when compared with the classical combline filter and similar performance. The balun has the coils distributed on three layers that minimized the board area needed it and optimizes the performances. The proposed packaged integrated antenna approach is successfully demonstrated here and the new module shows excellent performance when compared with a commercial solution, surpassing the normal Bluetooth class II dongle range which is up to 10 m and increasing the module range up to 120 m without an extra power amplifier

    mm-Wave Silicon ICs: Challenges and Opportunities

    Get PDF
    Millimeter-waves offer promising opportunities and interesting challenges to silicon integrated circuit and system designers. These challenges go beyond standard circuit design questions and span a broader range of topics including wave propagation, antenna design, and communication channel capacity limits. It is only meaningful to evaluate the benefits and shortcoming of silicon-based mm-wave integrated circuits in this broader context. This paper reviews some of these issues and presents several solutions to them

    System-level design and RF front-end implementation for a 3-10ghz multiband-ofdm ultrawideband receiver and built-in testing techniques for analog and rf integrated circuits

    Get PDF
    This work consists of two main parts: a) Design of a 3-10GHz UltraWideBand (UWB) Receiver and b) Built-In Testing Techniques (BIT) for Analog and RF circuits. The MultiBand OFDM (MB-OFDM) proposal for UWB communications has received significant attention for the implementation of very high data rate (up to 480Mb/s) wireless devices. A wideband LNA with a tunable notch filter, a downconversion quadrature mixer, and the overall radio system-level design are proposed for an 11-band 3.4-10.3GHz direct conversion receiver for MB-OFDM UWB implemented in a 0.25mm BiCMOS process. The packaged IC includes an RF front-end with interference rejection at 5.25GHz, a frequency synthesizer generating 11 carrier tones in quadrature with fast hopping, and a linear phase baseband section with 42dB of gain programmability. The receiver IC mounted on a FR-4 substrate provides a maximum gain of 67-78dB and NF of 5-10dB across all bands while consuming 114mA from a 2.5V supply. Two BIT techniques for analog and RF circuits are developed. The goal is to reduce the test cost by reducing the use of analog instrumentation. An integrated frequency response characterization system with a digital interface is proposed to test the magnitude and phase responses at different nodes of an analog circuit. A complete prototype in CMOS 0.35mm technology employs only 0.3mm2 of area. Its operation is demonstrated by performing frequency response measurements in a range of 1 to 130MHz on 2 analog filters integrated on the same chip. A very compact CMOS RF RMS Detector and a methodology for its use in the built-in measurement of the gain and 1dB compression point of RF circuits are proposed to address the problem of on-chip testing at RF frequencies. The proposed device generates a DC voltage proportional to the RMS voltage amplitude of an RF signal. A design in CMOS 0.35mm technology presents and input capacitance <15fF and occupies and area of 0.03mm2. The application of these two techniques in combination with a loop-back test architecture significantly enhances the testability of a wireless transceiver system

    System and Circuit Design Aspects for CMOS Wireless Handset Receivers

    Get PDF
    corecore