16 research outputs found

    Fast Computation of Sliding Discrete Tchebichef Moments and Its Application in Duplicated Regions Detection

    No full text
    International audienceComputational load remains a major concern when processing signals by means of sliding transforms. In this paper, we present an efficient algorithm for the fast computation of one-dimensional and two-dimensional sliding discrete Tchebichef moments. To do so, we first establish the relationships that exist between the Tchebichef moments of two neighboring windows taking advantage of Tchebichef polynomials’ properties. We then propose an original way to fast compute the moments of one window by utilizing the moment values of its previous window. We further theoretically establish the complexity of our fast algorithm and illustrate its interest within the framework of digital forensics and more precisely the detection of duplicated regions in an audio signal or an image. Our algorithm is used to extract local features of such a signal tampering. Experimental results show that its complexity is independent of the window size, validating the theory. They also exhibit that our algorithm is suitable to digital forensics and beyond to any applications based on sliding Tchebichef moments

    Mode Shape Description and Model Updating of Axisymmetric Structures Using Radial Tchebichef Moment Descriptors

    Get PDF
    A novel approach for mode shape feature extraction and model updating of axisymmetric structures based on radial Tchebichef moment (RTM) descriptors is proposed in this study. The mode shape features extracted by RTM descriptors can effectively compress the full-field modal vibration data and retain the most important information. The reconstruction of mode shapes using RTM descriptors can accurately describe the mode shapes, and the simulation shows that the RTM function is superior to Zernike moment function in terms of its mathematical properties and its shape reconstruction ability. In addition, the proposed modal correlation coefficient of the RTM amplitude can overcome the main disadvantage of using the modal assurance criterion (MAC), which has difficulty in identifying double or close modes of symmetric structures. Furthermore, the model updating of axisymmetric structures based on RTM descriptors appears to be more efficient and effective than the normal model updating method directly using modal vibration data, avoids manipulating large amounts of mode shape data, and speeds up the convergence of updating parameters. The RTM descriptors used in correlation analysis and model updating are demonstrated with a cover of an aeroengine rig. The frequency deviation between the test and the FE model was reduced from 17.13% to 1.23% for the first 13 modes via the model updating process. It verified the potential to industrial application with the proposed method

    On The Potential of Image Moments for Medical Diagnosis

    Get PDF
    Medical imaging is widely used for diagnosis and postoperative or post-therapy monitoring. The ever-increasing number of images produced has encouraged the introduction of automated methods to assist doctors or pathologists. In recent years, especially after the advent of convolutional neural networks, many researchers have focused on this approach, considering it to be the only method for diagnosis since it can perform a direct classification of images. However, many diagnostic systems still rely on handcrafted features to improve interpretability and limit resource consumption. In this work, we focused our efforts on orthogonal moments, first by providing an overview and taxonomy of their macrocategories and then by analysing their classification performance on very different medical tasks represented by four public benchmark data sets. The results confirmed that convolutional neural networks achieved excellent performance on all tasks. Despite being composed of much fewer features than those extracted by the networks, orthogonal moments proved to be competitive with them, showing comparable and, in some cases, better performance. In addition, Cartesian and harmonic categories provided a very low standard deviation, proving their robustness in medical diagnostic tasks. We strongly believe that the integration of the studied orthogonal moments can lead to more robust and reliable diagnostic systems, considering the performance obtained and the low variation of the results. Finally, since they have been shown to be effective on both magnetic resonance and computed tomography images, they can be easily extended to other imaging techniques

    An Improved Imperceptibility and Robustness of 4x4 DCT-SVD Image Watermarking with a Modified Entropy

    Get PDF
    A digital protection against unauthorized distribution of digital multimedia is highly on demand. Digital watermarking is a defence in multimedia protection for authorized ownership. This paper proposes an improved watermarking based on 4Ă—4 DCT-SVD blocks using modified entropy in image watermarking. A modified entropy is used to select unnoticeable blocks. The proposed watermarking scheme utilizes the lowest entropy values to determine unnoticeable regions of the watermarked image. This paper investigates the relationship between U(2,1) and U(3,1) coefficients of the U matrix 4Ă—4 DCT-SVD in image watermarking. The proposed watermarking scheme produces a great level of robustness and imperceptibility of the watermarked image against different attacks. The proposed scheme shows the improvement in terms of structural similarity index and normalized correlation of the watermarked image

    Automatic Segmentation and Classification of Red and White Blood cells in Thin Blood Smear Slides

    Get PDF
    In this work we develop a system for automatic detection and classification of cytological images which plays an increasing important role in medical diagnosis. A primary aim of this work is the accurate segmentation of cytological images of blood smears and subsequent feature extraction, along with studying related classification problems such as the identification and counting of peripheral blood smear particles, and classification of white blood cell into types five. Our proposed approach benefits from powerful image processing techniques to perform complete blood count (CBC) without human intervention. The general framework in this blood smear analysis research is as follows. Firstly, a digital blood smear image is de-noised using optimized Bayesian non-local means filter to design a dependable cell counting system that may be used under different image capture conditions. Then an edge preservation technique with Kuwahara filter is used to recover degraded and blurred white blood cell boundaries in blood smear images while reducing the residual negative effect of noise in images. After denoising and edge enhancement, the next step is binarization using combination of Otsu and Niblack to separate the cells and stained background. Cells separation and counting is achieved by granulometry, advanced active contours without edges, and morphological operators with watershed algorithm. Following this is the recognition of different types of white blood cells (WBCs), and also red blood cells (RBCs) segmentation. Using three main types of features: shape, intensity, and texture invariant features in combination with a variety of classifiers is next step. The following features are used in this work: intensity histogram features, invariant moments, the relative area, co-occurrence and run-length matrices, dual tree complex wavelet transform features, Haralick and Tamura features. Next, different statistical approaches involving correlation, distribution and redundancy are used to measure of the dependency between a set of features and to select feature variables on the white blood cell classification. A global sensitivity analysis with random sampling-high dimensional model representation (RS-HDMR) which can deal with independent and dependent input feature variables is used to assess dominate discriminatory power and the reliability of feature which leads to an efficient feature selection. These feature selection results are compared in experiments with branch and bound method and with sequential forward selection (SFS), respectively. This work examines support vector machine (SVM) and Convolutional Neural Networks (LeNet5) in connection with white blood cell classification. Finally, white blood cell classification system is validated in experiments conducted on cytological images of normal poor quality blood smears. These experimental results are also assessed with ground truth manually obtained from medical experts

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    The Role of Transient Vibration of the Skull on Concussion

    Get PDF
    Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head that affects brain function. The maximum mechanical impedance of the brain tissue occurs at 450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head, vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates, like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When the skull vibrates, the force spreads directly to the cortex, with no layer of cerebrospinal fluid to reflect the wave or cushion its force. To date, there is few researches investigating the effect of transient vibration of the skull. Therefore, the overall goal of the proposed research is to gain better understanding of the role of transient vibration of the skull on concussion. This goal will be achieved by addressing three research objectives. First, a MRI skull and brain segmentation automatic technique is developed. Due to bones’ weak magnetic resonance signal, MRI scans struggle with differentiating bone tissue from other structures. One of the most important components for a successful segmentation is high-quality ground truth labels. Therefore, we introduce a deep learning framework for skull segmentation purpose where the ground truth labels are created from CT imaging using the standard tessellation language (STL). Furthermore, the brain region will be important for a future work, thus, we explore a new initialization concept of the convolutional neural network (CNN) by orthogonal moments to improve brain segmentation in MRI. Second, the creation of a novel 2D and 3D Automatic Method to Align the Facial Skeleton is introduced. An important aspect for further impact analysis is the ability to precisely simulate the same point of impact on multiple bone models. To perform this task, the skull must be precisely aligned in all anatomical planes. Therefore, we introduce a 2D/3D technique to align the facial skeleton that was initially developed for automatically calculating the craniofacial symmetry midline. In the 2D version, the entire concept of using cephalometric landmarks and manual image grid alignment to construct the training dataset was introduced. Then, this concept was extended to a 3D version where coronal and transverse planes are aligned using CNN approach. As the alignment in the sagittal plane is still undefined, a new alignment based on these techniques will be created to align the sagittal plane using Frankfort plane as a framework. Finally, the resonant frequencies of multiple skulls are assessed to determine how the skull resonant frequency vibrations propagate into the brain tissue. After applying material properties and mesh to the skull, modal analysis is performed to assess the skull natural frequencies. Finally, theories will be raised regarding the relation between the skull geometry, such as shape and thickness, and vibration with brain tissue injury, which may result in concussive injury

    Application of texture analysis to muscle MRI: 1-What kind of information should be expected from texture analysis?

    Get PDF
    Several previous clinical or preclinical studies using computerized texture analysis of MR Images have demonstrated much more clinical discrimination than visual image analysis by the radiologist. In muscular dystrophy, a discriminating power has been already demonstrated with various methods of texture analysis of magnetic resonance images (MRI-TA). Unfortunately, a scale gap exists between the spatial resolutions of histological and MR images making a direct correlation impossible. Furthermore, the effect of the various histological modifications on the gray level of each pixel is complex and cannot be easily analyzed. Consequently, clinicians will not accept the use of MRI-TA in routine practice if TA remains a “black box” without clinical correspondence at a tissue level. A goal therefore of the multicenter European COST action MYO-MRI is to optimize MRI-TA methods in muscular dystrophy and to elucidate the histological meaning of MRI textures.info:eu-repo/semantics/publishedVersio
    corecore