34 research outputs found

    Oximetry use in obstructive sleep apnea

    Get PDF
    Producción CientíficaIntroduction. Overnight oximetry has been proposed as an accessible, simple, and reliable technique for obstructive sleep apnea syndrome (OSAS) diagnosis. From visual inspection to advanced signal processing, several studies have demonstrated the usefulness of oximetry as a screening tool. However, there is still controversy regarding the general application of oximetry as a single screening methodology for OSAS. Areas covered. Currently, high-resolution portable devices combined with pattern recognition-based applications are able to achieve high performance in the detection this disease. In this review, recent studies involving automated analysis of oximetry by means of advanced signal processing and machine learning algorithms are analyzed. Advantages and limitations are highlighted and novel research lines aimed at improving the screening ability of oximetry are proposed. Expert commentary. Oximetry is a cost-effective tool for OSAS screening in patients showing high pretest probability for the disease. Nevertheless, exhaustive analyses are still needed to further assess unattended oximetry monitoring as a single diagnostic test for sleep apnea, particularly in the pediatric population and in especial groups with significant comorbidities. In the following years, communication technologies and big data analysis will overcome current limitations of simplified sleep testing approaches, changing the detection and management of OSAS.This research has been partially supported by the projects DPI2017-84280-R and RTC-2015-3446-1 from Ministerio de Economía, Industria y Competitividad and European Regional Development Fund (FEDER), the project 66/2016 of the Sociedad Española de Neumología y Cirugía Torácica (SEPAR), and the project VA037U16 from the Consejería de Educación de la Junta de Castilla y León and FEDER. D. Álvarez was in receipt of a Juan de la Cierva grant IJCI-2014-22664 from the Ministerio de Economía y Competitividad

    Usefulness of Artificial Neural Networks in the Diagnosis and Treatment of Sleep Apnea-Hypopnea Syndrome

    Get PDF
    Sleep apnea-hypopnea syndrome (SAHS) is a chronic and highly prevalent disease considered a major health problem in industrialized countries. The gold standard diagnostic methodology is in-laboratory nocturnal polysomnography (PSG), which is complex, costly, and time consuming. In order to overcome these limitations, novel and simplified diagnostic alternatives are demanded. Sleep scientists carried out an exhaustive research during the last decades focused on the design of automated expert systems derived from artificial intelligence able to help sleep specialists in their daily practice. Among automated pattern recognition techniques, artificial neural networks (ANNs) have demonstrated to be efficient and accurate algorithms in order to implement computer-aided diagnosis systems aimed at assisting physicians in the management of SAHS. In this regard, several applications of ANNs have been developed, such as classification of patients suspected of suffering from SAHS, apnea-hypopnea index (AHI) prediction, detection and quantification of respiratory events, apneic events classification, automated sleep staging and arousal detection, alertness monitoring systems, and airflow pressure optimization in positive airway pressure (PAP) devices to fit patients’ needs. In the present research, current applications of ANNs in the framework of SAHS management are thoroughly reviewed

    Diseño y evaluación de metodologías de análisis automático de la oximetría nocturna como método simplificado de detección del síndrome de apnea-hipopnea obstructiva del sueño en niños. Validación en el hospital y en el domicilio.

    Get PDF
    El síndrome de apnea-hipopnea obstructiva del sueño (SAHOS) es una enfermedad de alta prevalencia en la población infantil, con una importante morbilidad y elevado impacto sociosanitario, en la que la detección precoz es esencial para iniciar un adecuado tratamiento, el cual debe ser siempre individualizado. El SAHOS es una alteración fisiopatológica compleja y multifactorial, en la que no sólo influye una susceptibilidad genética e individual (factores anatómicos y dinámicos), sino también de estilo de vida. Los factores de riesgo más frecuentes son la hipertrofia adenoamigdalar y la obesidad. Los síntomas en los niños son escasos, son principalmente nocturnos y requieren un alto nivel de sospecha. El SAHOS no diagnosticado o no tratado se relaciona con diferentes consecuencias metabólicas, cardiovasculares, neurocognitivas, inflamatorias, conductuales y falta de desarrollo estaturoponderal, lo que conduce a un empeoramiento del estado de salud en términos generales y disminución de calidad de vida.Departamento de Anatomía y RadiologíaDoctorado en Investigación en Ciencias de la Salu

    A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry

    Get PDF
    Producción CientíficaThe gold standard approach to diagnose obstructive sleep apnea (OSA) in children is overnight in-lab polysomnography (PSG), which is labor-intensive for clinicians and onerous to healthcare systems and families. Simplification of PSG should enhance availability and comfort, and reduce complexity and waitlists. Airflow (AF) and oximetry (SpO2) signals summarize most of the information needed to detect apneas and hypopneas, but automatic analysis of these signals using deep-learning algorithms has not been extensively investigated in the pediatric context. The aim of this study was to evaluate a convolutional neural network (CNN) architecture based on these two signals to estimate the severity of pediatric OSA. PSG-derived AF and SpO2 signals from the Childhood Adenotonsillectomy Trial (CHAT) database (1638 recordings), as well as from a clinical database (974 recordings), were analyzed. A 2D CNN fed with AF and SpO2 signals was implemented to estimate the number of apneic events, and the total apnea-hypopnea index (AHI) was estimated. A training-validation-test strategy was used to train the CNN, adjust the hyperparameters, and assess the diagnostic ability of the algorithm, respectively. Classification into four OSA severity levels (no OSA, mild, moderate, or severe) reached 4-class accuracy and Cohen's Kappa of 72.55% and 0.6011 in the CHAT test set, and 61.79% and 0.4469 in the clinical dataset, respectively. Binary classification accuracy using AHI cutoffs 1, 5 and 10 events/h ranged between 84.64% and 94.44% in CHAT, and 84.10%–90.26% in the clinical database. The proposed CNN-based architecture achieved high diagnostic ability in two independent databases, outperforming previous approaches that employed SpO2 signals alone, or other classical feature-engineering approaches. Therefore, analysis of AF and SpO2 signals using deep learning can be useful to deploy reliable computer-aided diagnostic tools for childhood OSA.Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (project 10.13039/501100011033)Fondo Europeo de Desarrollo Regional - Unión Europea (projects PID2020-115468RB-I00 and PDC2021-120775-I00)Sociedad Española de Neumología y Cirugía Torácica (project 649/2018)Sociedad Española de Sueño (project Beca de Investigación SES 2019)Consorcio Centro de Investigación Biomédica en Red - Instituto de Salud Carlos III - Ministerio de Ciencia, Innovación y Universidades (project CB19/01/00012)National Institutes of Health (projects HL083075, HL083129, UL1-RR-024134 and UL1 RR024989)National Heart, Lung, and Blood Institute (projects R24 HL114473 and 75N92019R002)Ministerio de Educación, Cultura y Deporte (grant FPU16/02938)Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación - Fondo Social Europeo (grant RYC2019-028566-I)National Institutes of Health (grants HL130984, HL140548, and AG061824

    An interactive, real-time, high precision and portable monitoring system of obstructive sleep apnea

    Get PDF
    Obstructive sleep apnea (OSA) is the most common type of sleep apnea which is defined as the suspension of breathing. OSA is generally caused by complete or partial obstruction of airway during sleep, making the breathing pattern irregular and abnormal for prolonged periods of time. Apnea can contribute to a variety of life threatening medical conditions, and can be deadly if left untreated. Nowadays, out of 18 to 50 million people in the US, most cases remain undiagnosed due to the cost, cumbersome and resource limitations of overnight polysomnography (PSG) at sleep labs. Currently PSG relies on a doctor's experience. In order to improve the medical service efficiency, reduce diagnosis time and ensure a more accurate diagnosis, a quantitative and objective method is needed. In this dissertation, an innovative method in characterizing bio-signals for detecting epochs of sleep apnea with high accuracy is presented. Three data channels that are related to breath defect; respiratory sound, ECG and SpO2 are investigated, in order to extract physiological indicators that characterize sleep apnea. An automated method was used to analyze the respiratory sound to find pauses in breathing. Furthermore, the automated method analyzed ECG to find irregular heartbeats and SpO 2 to find rises and drops. The system consists of three main parts which are signal segmentation, features extraction and features classification. Feature extractions process is based on statistical measures. Features classification process is learned through Support Vector Machines (SVMs) and Neural Network (NN) classifiers. Moreover, a preprocessing technique is carried out to distinguish the R-wave from the other waves of the ECG signal. The approach presented in this dissertation was tested using downloaded polysomnographic ECG and SpO2 data from the Physionet database. In addition, to identifying sleep apnea using the acoustic signal of respiration; the characterization of breathing sound was carried by Voice Activity Detection (VAD) algorithm. VAD was used to measure the energy of the acoustic respiratory signal during breath and silence segments. From the experimental results for the three signals, it was concluded that the precision of classifying sleep apnea has an accuracy of 97%. This result offers a clinical reference value for identifying OSA instead of expensive PSG visual scoring method which is commonly used to asses sleep apnea, and could reduce diagnostic time and improve medical service efficiency

    Automatic sleep staging from ventilator signals in non-invasive ventilation

    Get PDF
    AbstractNon-invasive ventilation (NIV), a recognized treatment for chronic hypercapnic respiratory failure, is predominantly applied at night. Nevertheless, the quality of sleep is rarely evaluated due to the required technological complexity. A new technique for automatic sleep staging is here proposed for patients treated by NIV. This new technique only requires signals (airflow and hemoglobin oxygen saturation) available in domiciliary ventilators plus a photo-plethysmogram, a signal already managed by some ventilators. Consequently, electroencephalogram, electrooculogram, electromyogram, and electrocardiogram recordings are not needed. Cardiorespiratory features are extracted from the three selected signals and used as input to a Support Vector Machine (SVM) multi-class classifier. Two different types of sleep scoring were investigated: the first type was used to distinguish three stages (wake, REM sleep and nonREM sleep), and the second type was used to evaluate five stages (wake, REM sleep, N1, N2 and N3 stages). Patient-dependent and patient-independent classifiers were tested comparing the resulting hypnograms with those obtained from visual/manual scoring by a sleep specialist. An average accuracy of 91% (84%) was obtained with three-stage (five-stage) patient-dependent classifiers. With patient-independent classifiers, an average accuracy of 78% (62%) was obtained when three (five) sleep stages were scored. Also if the PPG-based and flow features are left out, a reduction of 4.5% (resp. 5%) in accuracy is observed for the three-stage (resp. five-stage) cases. Our results suggest that long-term sleep evaluation and nocturnal monitoring at home is feasible in patients treated by NIV. Our technique could even be integrated into ventilators

    An explainable deep-learning architecture for pediatric sleep apnea identification from overnight airflow and oximetry signals

    Get PDF
    Producción CientíficaDeep-learning algorithms have been proposed to analyze overnight airflow (AF) and oximetry (SpO2) signals to simplify the diagnosis of pediatric obstructive sleep apnea (OSA), but current algorithms are hardly interpretable. Explainable artificial intelligence (XAI) algorithms can clarify the models-derived predictions on these signals, enhancing their diagnostic trustworthiness. Here, we assess an explainable architecture that combines convolutional and recurrent neural networks (CNN + RNN) to detect pediatric OSA and its severity. AF and SpO2 were obtained from the Childhood Adenotonsillectomy Trial (CHAT) public database (n = 1,638) and a proprietary database (n = 974). These signals were arranged in 30-min segments and processed by the CNN + RNN architecture to derive the number of apneic events per segment. The apnea-hypopnea index (AHI) was computed from the CNN + RNN-derived estimates and grouped into four OSA severity levels. The Gradient-weighted Class Activation Mapping (Grad-CAM) XAI algorithm was used to identify and interpret novel OSA-related patterns of interest. The AHI regression reached very high agreement (intraclass correlation coefficient > 0.9), while OSA severity classification achieved 4-class accuracies 74.51% and 62.31%, and 4-class Cohen’s Kappa 0.6231 and 0.4495, in CHAT and the private datasets, respectively. All diagnostic accuracies on increasing AHI cutoffs (1, 5 and 10 events/h) surpassed 84%. The Grad-CAM heatmaps revealed that the model focuses on sudden AF cessations and SpO2 drops to detect apneas and hypopneas with desaturations, and often discards patterns of hypopneas linked to arousals. Therefore, an interpretable CNN + RNN model to analyze AF and SpO2 can be helpful as a diagnostic alternative in symptomatic children at risk of OSA.Ministerio de Ciencia e Innovación /AEI/10.13039/501100011033/ FEDER (grants PID2020-115468RB-I00 and PDC2021-120775-I00)CIBER -Consorcio Centro de Investigación Biomédica en Red- (CB19/01/00012), Instituto de Salud Carlos IIINational Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002)Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación- “Ramón y Cajal” grant (RYC2019-028566-I

    Pattern recognition applied to airflow recordings to help in sleep Apnea-Hypopnea Syndrome diagnosis

    Get PDF
    El Síndrome de la Apnea Hipopnea del Sueño (SAHS) es un trastorno caracterizado por pausas respiratorias durante el sueño. Se considera un grave problema de salud que afecta muy negativamente a la calidad de vida y está relacionada con las principales causas de mortalidad, como los accidentes cardiovasculares y cerebrovasculares. A pesar de su elevada prevalencia (2–7%) se considera una enfermedad infradiagnosticada. El diagnóstico estándar se realiza mediante polisomnografía (PSG) nocturna, que es un método complejo y de alto coste. Estas limitaciones han originado largas listas de espera. Esta Tesis Doctoral tiene como principal objetivo simplificar la metodología de diagnóstico del SAHS . Para ello, se propone el análisis exhaustivo de la señal de flujo aéreo monocanal. La metodología propuesta se basa en tres fases (i) extracción de características, (ii) selección de características, y (iii) procesado de la señal mediante métodos de reconocimiento de patrones. Los resultados obtenidos muestran un alto rendimiento diagnóstico de la propuesta tanto en la detección como en la determinación del grado de severidad del SAHS. Por ello, la principal conclusión de la Tesis Doctoral es que los métodos de reconocimiento automático de patrones aplicados sobre la señal de flujo aéreo monocanal resultan de utilidad para reducir la complejidad del proceso de diagnóstico del SAHS.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemátic

    Utilidad de las señales de oximetría y flujo aéreo en el diagnóstico simplificado de la apnea obstructiva del sueño. Diseño de un test automático domiciliario

    Get PDF
    Obstructive Sleep Apnea (OSA) is a respiratory disorder characterized by recurrent episodes of total (apnea) or partial (hypopnea) absence of airflow during sleep. Untreated OSA produces a significant decrease in quality of life and is associated with the main causes of mortality in industrialized countries.However, OSA is considered an underdiagnosed chronic disease. Continuous positive airway pressure (CPAP) is the most common therapeutic option. Nocturnal polysomnography (PSG) in a specialized sleep unit is the reference diagnostic method, although it has low availability and accessibility. Consequently, in recent years there has been a significant demand for abbreviated methods, most of them at home, to reduce waiting lists. The fundamental hypothesis that the use of automatic processing techniques based on machine learning tools could allow maximizing the diagnostic accuracy of a reduced set of combined biomedical signals: overnight oximetry and airflow recorded at patient&#8217;s home. The main objective was to evaluate whether the joint analysis by means of machine learning algorithms of unsupervised SpO2 and AF signals acquired at patient's home leads to a significant increase in diagnostic performance compared to single-channel approaches. A prospective observational study was carried out in which a population referred consecutively to the Sleep Unit showing moderate-to-high clinical suspicion of having OSA was analyzed.All patients underwent an unsupervised PSG at home(gold standard) from which the SpO2 and AF signals were extracted, which were subsequently processed offline.The apnea-hypopnea index(AHI) derived from the PSG was used to confirm or rule out the presence of the disease.Three different approaches for screening patients with suspected OSA were assessed in terms of the source of information used: single-channel based on SpO2, single-channel based on AF, and two-channel combining information from both SpO2 and AF.The automatic processing of the SpO2 and AF signals was developed in 4 stages: preprocessing, feature extraction, feature selection, and pattern recognition. Unsupervised SpO2 and AF recordings were parameterized using the fast correlation-based filter(FCBF)algorithm.The following machine learning methods were used: linear regression(MLR), multilayer perceptron neural networks(MLP) and support vector machines(SVM). The population was divided into independent training and test groups. Agreement between the estimated and the actual AHIderived from at-home PSG was assessed, and typical OSA cutoff points(5, 15, and 30 events/h) were applied. A total of 299 unattended PSGs were performed at home, with a validity percentage of 85.6%. The highest agreement between the estimated AHI and the PSG AHI was reached by the SVMSpO2+AF model, with an CCI 0.93 and a 4-class kappa index 0.71, as well as with an overall accuracy for the 4 OSA severity categories equal to 81.25%, significantly higher than the individual analysis of the SpO2 signal and the airflow signal.The SVMSpO2+AF model achieved the highest diagnostic performance of all algorithms for the detection of severe OSA, with an accuracy of 95.83% and AUC ROC 0.98. In addition, the AUC ROC of the dual-channel models was significantly higher (p<0.01) than that achieved by all the single-channel approaches for the cutoff of 15events/h. The proposed methodology based on the joint automatic analysis of the SpO2 and AF signals acquired at home showed a high complementarity that led to a remarkable increase in diagnostic performance compared to single-channel approaches. The automatic models outperformed the conventional indices(desaturation and airflow-derived indexes) both in terms of correlation and concordance with the AHI from PSG, as well as in terms of overall diagnostic accuracy, providing a moderate increase in diagnostic performance, particularly in the detection of moderate-to-severe OSA.Our findings suggest that the joint analysis of oximetry and airflow signals by means of machine learning methods allows a simplified as well as accurate screening of OSA at patient's home.La Apnea Obstructiva del Sueño (AOS) es un trastorno respiratorio crónico infradiagnosticado caracterizado por la repetición recurrente de episodios de ausencia total (apnea) o parcial (hipopnea) del flujo aéreo (FA) durante el sueño, que disminuye la calidad de vida y aumenta la mortalidad. La CPAP es el tratamiento más habitual, no invasivo, eficaz y coste-efectivo, por lo que favorecer el proceso de diagnóstico es fundamental. La PSG nocturna es el método diagnóstico de referencia, presentando baja disponibilidad y accesibilidad, lo que ha contribuido a desbordar los recursos disponibles, retrasando el diagnóstico y el tratamiento. En contexto de la simplificación diagnóstica portátil, en auge, el uso de únicamente una (monocanal) o dos (bi-canal) señales, como las de SpO2 y FA ha sido ampliamente explorado, aunque la mayoría en entornos hospitalarios controlados. La hipótesis se fundamenta en que las técnicas de procesado automático basadas en machine learning podrían maximizar la precisión diagnóstica de un conjunto reducido de señales combinadas. El objetivo consistió en evaluar si el análisis conjunto mediante algoritmos de aprendizaje automático de las señales de SpO2 y FA no supervisadas adquiridas en el domicilio aumenta el rendimiento diagnóstico en comparación con los enfoques de un solo canal. Se llevó a cabo un estudio observacional prospectivo en pacientes con sospecha moderada-alta de AOS. Se realizó una PSG no supervisada en su domicilio (gold standard de referencia), de la que se extrajeron las señales de SpO2 y FA, procesadas offline posteriormente. El índice de apnea-hipopnea (IAH) derivado de la PSG se empleó para confirmar o descartar la presencia de la enfermedad. Se implementaron y compararon 3 metodologías de screening en función de la fuente de información empleada: (1) monocanal basado en SpO2, (2) monocanal basado en FA, (3) bi-canal combinando SpO2 y FA. El procesado automático de las señales de SpO2 y FA se desarrolló en 4 etapas: preprocesado, extracción de características, selección de características (mediante fast correlation-based filter, FCBF) y reconocimiento de patrones. Cada enfoque de screening se empleó para estimar automáticamente el IAH utilizando los siguientes métodos de machine learning: (1) regresión lineal múltiple (MLR), (2) redes neuronales perceptrón multicapa (MLP) y (3) máquinas vector soporte (SVM). La población se dividió en grupos independientes de entrenamiento (60%) y test (40%). Se realizaron un total de 299 PSGs domiciliarias. Los modelos de enfoque combinado bi-canal alcanzaron valores de concordancia entre el IAH estimado y el IAH de la PSG domiciliaria y de rendimiento diagnóstico para todos los puntos de corte típicos de AOS (5, 15 y 30 e/h) superiores al enfoque monocanal. La mayor concordancia fue alcanzada por el modelo SVMSpO2+FA (CCI 0.93, kappa4 clases 0.71, precisión global 81.25%), significativamente superior a los análisis individuales. El modelo SVMSpO2+FA alcanzó el mayor rendimiento diagnóstico de todos los algoritmos para la detección de AOS grave (precisión 95.83% y AUC ROC 0.98). Además, el AUC ROC de los modelos bi-canal fue superior (p <0.01) al de los enfoques monocanal para el punto de corte de 15 e/h. La metodología propuesta basada en el análisis automático conjunto de las señales de SpO2 y FA adquiridas en el domicilio mostró una alta complementariedad y un notable aumento del rendimiento diagnóstico en comparación con los enfoques monocanal. Los modelos automáticos superaron globalmente a los índices clásicos (de desaturación y de eventos de flujo aéreo), aportando un incremento moderado del rendimiento diagnóstico particularmente en la detección de AOS moderado-grave. Los resultados obtenidos indican que el análisis conjunto de las señales de oximetría y flujo mediante métodos de aprendizaje automático permite un screening simplificado a la vez que preciso de la AOS en el domicilio del paciente.Escuela de DoctoradoDoctorado en Investigación en Ciencias de la Salu

    Early warnings of heart rate deterioration

    Get PDF
    Hospitals can experience difficulty in detecting and responding to early signs of patient deterioration leading to late intensive care referrals, excess mortality and morbidity, and increased hospital costs. Our study aims to explore potential indicators of physiological deterioration by the analysis of vital-signs. The dataset used comprises heart rate (HR) measurements from MIMIC II waveform database, taken from six patients admitted to the Intensive Care Unit (ICU) and diagnosed with severe sepsis. Different indicators were considered: 1) generic early warning indicators used in ecosystems analysis (autocorrelation at-1-lag (ACF1), standard deviation (SD), skewness, kurtosis and heteroskedasticity) and 2) entropy analysis (kernel entropy and multi scale entropy). Our preliminary findings suggest that when a critical transition is approaching, the equilibrium state changes what is visible in the ACF1 and SD values, but also by the analysis of the entropy. Entropy allows to characterize the complexity of the time series during the hospital stay and can be used as an indicator of regime shifts in a patient’s condition. One of the main problems is its dependency of the scale used. Our results demonstrate that different entropy scales should be used depending of the level of entropy verified
    corecore