111 research outputs found

    Geophysics for Mineral Exploration

    Get PDF
    This Special Issue contains ten papers which focus on emerging geophysical techniques for mineral exploration, novel modeling, and interpretation methods, including joint inversions of multi physics data, and challenging case studies. The papers cover a wide range of mineral deposits, including banded iron formations, epithermal gold–silver–copper–iron–molybdenum deposits, iron-oxide–copper–gold deposits, and prospecting forgroundwater resources

    Multifrequency Topological Derivative Approach to Inverse Scattering Problems in Attenuating Media

    Get PDF
    Detecting objects hidden in a medium is an inverse problem. Given data recorded at detectors when sources emit waves that interact with the medium, we aim to find objects that would generate similar data in the presence of the same waves. In opposition, the associated forward problem describes the evolution of the waves in the presence of known objects. This gives a symmetry relation: if the true objects (the desired solution of the inverse problem) were considered for solving the forward problem, then the recorded data should be returned. In this paper, we develop a topological derivative-based multifrequency iterative algorithm to reconstruct objects buried in attenuating media with limited aperture data. We demonstrate the method on half-space configurations, which can be related to problems set in the whole space by symmetry. One-step implementations of the algorithm provide initial approximations, which are improved in a few iterations. We can locate object components of sizes smaller than the main components, or buried deeper inside. However, attenuation effects hinder object detection depending on the size and depth for fixed ranges of frequencies

    Magnetotelluric studies in geothermal areas of Greece and Kenya

    Get PDF

    Multi-dimensional Resistivity Models of the Shallow Coal Seams at the Opencast Mine 'Garzweiler I' (Northwest of Cologne) inferred from Radiomagnetotelluric, Transient Electromagnetic and Laboratory Data

    Get PDF
    The entire Cenozoic unconsolidated fill of the Lower Rhine Embayment in Germany hosts the largest single lignite, or brown coal, deposit in Europe which covers an area of some 2,500 km2 to the northwest of Cologne. Rhineland brown coal is mined in large-scale opencast mining and accounts for around one-quarter of the public electricity supply in Germany. The present study was devoted to carrying out radiomagnetotelluric (RMT) and transient electromagnetic (TEM) investigations over the shallow coal seams at the opencast mine 'Garzweiler I.' The main objectives of the survey were to highlight the applicability and efficiency of RMT and TEM methods in an area like brown coal exploration, and to image the vertical electrical resistivity structure of these coal seams. Therefore, the vertical and lateral resolution capabilities of such methods were as necessary as the ability to cover large areas. Consequently, a total of 86 azimuthal RMT and 33 in-loop TEM soundings were carried out along six separate profiles over two opencast benches at the 'Garzweiler I' mine. The local stratigraphy at the survey areas comprises a layer-cake sequence, from top to bottom, of Garzweiler, Frimmersdorf and Morken coal seams embedded in a sand background, consisting of Surface, Neurath, Frimmersdorf and Morken Sands. A considerable amount of clay and silt intervenes the whole succession. The data were interpreted extensively and consistently in terms of one-dimensional (1D) RMT and TEM resistivity models, without using any complex multi-dimensional interpretation. However, the presence of thin, surficial clay masses (or lenses) broke down such interpretation scheme. In this case, to greatly improve the resistivity resolution for these surficial masses and the underlying coal seams, two-dimensional (2D) RMT and three-dimensional (3D) TEM interpretations have been carried out. They could be used effectively to study the local EM distortion on the measured data, where these surficial masses were found, as well as to cross-check the nearby-topography effect. Because the RMT data are usually skin-depth limited, they only provided a resolution depth between 25 and 30 m for the shallow resistivity structures. Whereas, the TEM data still have sufficiently early- to late-time information, and therefore resulted in a better resolution depth of about 100 m for the shallow to sufficiently-deep resistivity structures. The final 1D/2D RMT and 1D/3D TEM resistivity models displayed a satisfied correlation with both thicknesses derived from the stratigraphic-control boreholes and resistivities measured from direct-current (DC) and spectral induced polarization (SIP) laboratory techniques on 16 rock samples. As demonstrated, the integrated use of azimuthal RMT and in-loop TEM soundings was highly successful and effective at mapping the major stratigraphic units at the survey areas, i.e. the shallowest conductive Garzweiler and Frimmersdorf Coals within their fairly resistive sand background. They could not distinguish between Neurath Sand and the underlying sand/silt or between Frimmersdorf Coal and the underlying organic clay. The deepest Morken Coal was beyond the depth-of-investigation of the present measurements. Finally, the resistivity models revealed that both coal seams gently dip in the southwesterly direction. This should be in fairly good agreement with the regional structural makeup of the Rhineland brown coal. However, they showed that Garzweiler Coal is gradually thinned northeastwards, while Frimmersdorf Coal still has almost a regular thickness

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    • …
    corecore