70 research outputs found

    Path Loss Characterization for Intra-Vehicle Wearable Deployments at 60 GHz

    Get PDF
    In this work, we present the results of a wideband measurement campaign at 60 GHz conducted inside a Linkker electric city bus. Targeting prospective millimeter-wave (mmWave) public transportation wearable scenarios, we mimic a typical deployment of mobile high-end consumer devices in a dense environment. Specifically, our intra-vehicle deployment includes one receiver and multiple transmitters corresponding to a mmWave access point and passengers' wearable and hand-held devices. While the receiver is located in the front part of the bus, the transmitters repeat realistic locations of personal devices (i) at the seat level (e.g., a hand-held device) and (ii) at a height 70 cm above the seat (e.g., a wearable device: augmented reality glasses or a head-mounted display). Based on the measured received power, we construct a logarithmic model for the distance-dependent path loss. The parametrized models developed in the course of this study have the potential to become an attractive ground for the link budget estimation and interference footprint studies in crowded public transportation scenarios.Comment: 4 pages, 8 figures, 1 table, accepted to EuCAP 201

    Facilitating Internet of Things on the Edge

    Get PDF
    The evolution of electronics and wireless technologies has entered a new era, the Internet of Things (IoT). Presently, IoT technologies influence the global market, bringing benefits in many areas, including healthcare, manufacturing, transportation, and entertainment. Modern IoT devices serve as a thin client with data processing performed in a remote computing node, such as a cloud server or a mobile edge compute unit. These computing units own significant resources that allow prompt data processing. The user experience for such an approach relies drastically on the availability and quality of the internet connection. In this case, if the internet connection is unavailable, the resulting operations of IoT applications can be completely disrupted. It is worth noting that emerging IoT applications are even more throughput demanding and latency-sensitive which makes communication networks a practical bottleneck for the service provisioning. This thesis aims to eliminate the limitations of wireless access, via the improvement of connectivity and throughput between the devices on the edge, as well as their network identification, which is fundamentally important for IoT service management. The introduction begins with a discussion on the emerging IoT applications and their demands. Subsequent chapters introduce scenarios of interest, describe the proposed solutions and provide selected performance evaluation results. Specifically, we start with research on the use of degraded memory chips for network identification of IoT devices as an alternative to conventional methods, such as IMEI; these methods are not vulnerable to tampering and cloning. Further, we introduce our contributions for improving connectivity and throughput among IoT devices on the edge in a case where the mobile network infrastructure is limited or totally unavailable. Finally, we conclude the introduction with a summary of the results achieved

    Simulation analysis of algorithms for interference management in 5G cellular networks using spatial spectrum sharing

    Get PDF
    In this thesis we completely overhaul past techniques to the new millimeter wave frequencies used in 5G and the aim is to study algorithm, protocols and architectures enablers to allow spatial spectrum sharing between different networks at these frequencies. With the use of specific modules of the network simulator ns-3, studies of simulations has been made in order to analyse performance of several sharing procedure with the goal of increase performance in a 5G mobile networkope

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Edge Computing: The Computing Infrastructure for the Smart Mega-cities of the Future

    Get PDF
    Future mega-cities are expected to be smart and integrate sensing, wireless communications, and artificial intelligence to offer innovative services to their citizens. This development has the potential to generate massive amounts of data which need to be processed in a cost-effective, scalable, and continuous manner. Fulfilling this requirement requires solutions that can offer the necessary computational infrastructure while meeting the constraints of cities (e.g., budget and energy). This paper contributes a research vision for using edge computing to deliver the computing infrastructure for emerging smart mega-cities. We present use cases, identify key requirements, and reflect on the current state-of-the-art. We also address edge server placements, which is a key challenge for the adoption of edge computing, demonstrating how it is needed to determine a scalable and effective deployment of edge nodes for satisfying the processing needs of smart mega-cities.Peer reviewe

    Edge Computing : The Computing Infrastructure for the Smart Megacities of the Future

    Get PDF
    Future mega-cities are expected to be smart and integrate sensing, wireless communications, and artificial intelligence to offer innovative services to their citizens. This development has the potential to generate massive amounts of data which need to be processed in a cost-effective, scalable, and continuous manner. Fulfilling this requirement requires solutions that can offer the necessary computational infrastructure while meeting the constraints of cities (e.g., budget and energy). This paper contributes a research vision for using edge computing to deliver the computing infrastructure for emerging smart mega-cities. We present use cases, identify key requirements, and reflect on the current state-of-the-art. We also address edge server placements, which is a key challenge for the adoption of edge computing, demonstrating how it is needed to determine a scalable and effective deployment of edge nodes for satisfying the processing needs of smart mega-cities.Peer reviewe
    corecore