2,793 research outputs found

    Stochastic Analysis of LMS Algorithm with Delayed Block Coefficient Adaptation

    Full text link
    In high sample-rate applications of the least-mean-square (LMS) adaptive filtering algorithm, pipelining or/and block processing is required. In this paper, a stochastic analysis of the delayed block LMS algorithm is presented. As opposed to earlier work, pipelining and block processing are jointly considered and extensively examined. Different analyses for the steady and transient states to estimate the step-size bound, adaptation accuracy and adaptation speed based on the recursive relation of delayed block excess mean square error (MSE) are presented. The effect of different amounts of pipelining delays and block sizes on the adaptation accuracy and speed of the adaptive filter with different filter taps and speed-ups are studied. It is concluded that for a constant speed-up, a large delay and small block size lead to a slower convergence rate compared to a small delay and large block size with almost the same steady-state MSE. Monte Carlo simulations indicate a fairly good agreement with the proposed estimates for Gaussian inputs.Comment: 13 pages, 8 figure

    An affine combination of two LMS adaptive filters - Transient mean-square analysis

    Get PDF
    This paper studies the statistical behavior of an affine combination of the outputs of two LMS adaptive filters that simultaneously adapt using the same white Gaussian inputs. The purpose of the combination is to obtain an LMS adaptive filter with fast convergence and small steady-state mean-square deviation (MSD). The linear combination studied is a generalization of the convex combination, in which the combination factor λ(n)\lambda(n) is restricted to the interval (0,1)(0,1). The viewpoint is taken that each of the two filters produces dependent estimates of the unknown channel. Thus, there exists a sequence of optimal affine combining coefficients which minimizes the MSE. First, the optimal unrealizable affine combiner is studied and provides the best possible performance for this class. Then two new schemes are proposed for practical applications. The mean-square performances are analyzed and validated by Monte Carlo simulations. With proper design, the two practical schemes yield an overall MSD that is usually less than the MSD's of either filter

    Stochastic analysis of an error power ratio scheme applied to the affine combination of two LMS adaptive filters

    Get PDF
    The affine combination of two adaptive filters that simultaneously adapt on the same inputs has been actively investigated. In these structures, the filter outputs are linearly combined to yield a performance that is better than that of either filter. Various decision rules can be used to determine the time-varying parameter for combining the filter outputs. A recently proposed scheme based on the ratio of error powers of the two filters has been shown by simulation to achieve nearly optimum performance. The purpose of this paper is to present a first analysis of the statistical behavior of this error power scheme for white Gaussian inputs. Expressions are derived for the mean behavior of the combination parameter and for the adaptive weight mean-square deviation. Monte Carlo simulations show good to excellent agreement with the theoretical predictions

    Adaptive Mixture Methods Based on Bregman Divergences

    Get PDF
    We investigate adaptive mixture methods that linearly combine outputs of mm constituent filters running in parallel to model a desired signal. We use "Bregman divergences" and obtain certain multiplicative updates to train the linear combination weights under an affine constraint or without any constraints. We use unnormalized relative entropy and relative entropy to define two different Bregman divergences that produce an unnormalized exponentiated gradient update and a normalized exponentiated gradient update on the mixture weights, respectively. We then carry out the mean and the mean-square transient analysis of these adaptive algorithms when they are used to combine outputs of mm constituent filters. We illustrate the accuracy of our results and demonstrate the effectiveness of these updates for sparse mixture systems.Comment: Submitted to Digital Signal Processing, Elsevier; IEEE.or

    Performance Analysis of l_0 Norm Constraint Least Mean Square Algorithm

    Full text link
    As one of the recently proposed algorithms for sparse system identification, l0l_0 norm constraint Least Mean Square (l0l_0-LMS) algorithm modifies the cost function of the traditional method with a penalty of tap-weight sparsity. The performance of l0l_0-LMS is quite attractive compared with its various precursors. However, there has been no detailed study of its performance. This paper presents all-around and throughout theoretical performance analysis of l0l_0-LMS for white Gaussian input data based on some reasonable assumptions. Expressions for steady-state mean square deviation (MSD) are derived and discussed with respect to algorithm parameters and system sparsity. The parameter selection rule is established for achieving the best performance. Approximated with Taylor series, the instantaneous behavior is also derived. In addition, the relationship between l0l_0-LMS and some previous arts and the sufficient conditions for l0l_0-LMS to accelerate convergence are set up. Finally, all of the theoretical results are compared with simulations and are shown to agree well in a large range of parameter setting.Comment: 31 pages, 8 figure
    corecore