17 research outputs found

    An efficient iterative method for dynamical Ginzburg-Landau equations

    Full text link
    In this paper, we propose a new finite element approach to simulate the time-dependent Ginzburg-Landau equations under the temporal gauge, and design an efficient preconditioner for the Newton iteration of the resulting discrete system. The new approach solves the magnetic potential in H(curl) space by the lowest order of the second kind Nedelec element. This approach offers a simple way to deal with the boundary condition, and leads to a stable and reliable performance when dealing with the superconductor with reentrant corners. The comparison in numerical simulations verifies the efficiency of the proposed preconditioner, which can significantly speed up the simulation in large-scale computations

    An energy stable and maximum bound principle preserving scheme for the dynamic Ginzburg-Landau equations under the temporal gauge

    Full text link
    This paper proposes a decoupled numerical scheme of the time-dependent Ginzburg--Landau equations under the temporal gauge. For the magnetic potential and the order parameter, the discrete scheme adopts the second type NedeËŠ{\rm \acute{e}}lec element and the linear element for spatial discretization, respectively; and a linearized backward Euler method and the first order exponential time differencing method for time discretization, respectively. The maximum bound principle (MBP) of the order parameter and the energy dissipation law in the discrete sense are proved. The discrete energy stability and MBP-preservation can guarantee the stability and validity of the numerical simulations, and further facilitate the adoption of an adaptive time-stepping strategy, which often plays an important role in long-time simulations of vortex dynamics, especially when the applied magnetic field is strong. An optimal error estimate of the proposed scheme is also given. Numerical examples verify the theoretical results of the proposed scheme and demonstrate the vortex motions of superconductors in an external magnetic field
    corecore