6,859 research outputs found

    Using mobility information to perform a feasibility study and the evaluation of spatio-temporal energy demanded by an electric taxi fleet

    Get PDF
    Half of the global population already lives in urban areas, facing to the problem of air pollution mainly caused by the transportation system. The recently worsening of urban air quality has a direct impact on the human health. Replacing today’s internal combustion engine vehicles with electric ones in public fleets could provide a deep impact on the air quality in the cities. In this paper, real mobility information is used as decision support for the taxi fleet manager to promote the adoption of electric taxi cabs in the city of San Francisco, USA. Firstly, mobility characteristics and energy requirements of a single taxi are analyzed. Then, the results are generalized to all vehicles from the taxi fleet. An electrificability rate of the taxi fleet is generated, providing information about the number of current trips that could be performed by electric taxis without modifying the current driver mobility patterns. The analysis results reveal that 75.2% of the current taxis could be replaced by electric vehicles, considering a current standard battery capacity (24–30 kWh). This value can increase significantly (to 100%), taking into account the evolution of the price and capacity of the batteries installed in the last models of electric vehicles that are coming to the market. The economic analysis shows that the purchasing costs of an electric taxi are bigger than conventional one. However, fuel, maintenance and repair costs are much lower. Using the expected energy consumption information evaluated in this study, the total spatio-temporal demand of electric energy required to recharge the electric fleet is also calculated, allowing identifying optimal location of charging infrastructure based on realistic routing patterns. This information could also be used by the distribution system operator to identify possible reinforcement actions in the electric grid in order to promote introducing electric vehicles

    Estimation Of Idle Time Using Machine Learning Models For Vehicle-To-Grid (V2G) Integration And Services

    Get PDF
    As the Electric Vehicles (EVs) market continues to expand, ensuring the access to charging stations remains a significant concern. This work focuses on addressing multiple challenges related to EV charging behavior and Vehicle-to-Grid (V2G) services. Firstly, it focuses on accurate minute-ahead (20 minute \& 30 minute intervals) load forecasts for an EV charging station by using four years of historical data, from 2018-2021. This data is recorded from a university campus garage charging station. Machine Learning (ML) models such as Seasonal Auto-Regressive Integrated Moving Average (SARIMA), Random Forest (RF), and Neural Networks (NN) are employed for load forecasts in terms of Kilowatt hour (kWh) delivered from 54 charging stations. Preliminary results indicate that RF method performed better compared to other ML approaches, achieving a average Mean Absolute Error (MAE) of 7.26 on historical weekdays data. Secondly, it focuses on estimating the probability of aggregated available capacity of users for V2G connections, which could be sold back to the grid through V2G system. To achieve this, an Idle Time (IT) parameter was tracked from the time spent by the EV users at the charging station after being fully charged. ML classification methods such as Logistic Regression (LR) and Linear Support Vector Classifier (SVC) were employed to estimate the IT variable. The SVC model performed better in estimating IT variable with an accuracy of 85% over LR 81%. This work also analyzes the aggregated excess kWh available from the charging stations for V2G services, which offer benefits to both EV owners through incentives and the grid by balancing the load. ML models, including Support Vector Regressor (SVR), Gradient Boosting Regressor (GBR), Long-Short Term Memory (LSTM), and Random Forest (RF), are employed. LSTM performs better for this prediction problem with a Mean Absolute Percentage Error (MAPE) of 3.12, and RF as second best with lowest 3.59, when considering historical data on weekdays. Furthermore, this work estimated the number of users available for V2G services corresponding to 15\% and 30\% of excess kWh, by using ML classification models such as Decision Tree (DT) and K Nearest Neighbor (KNN). Among these models, DT performed better, with highest 89% and 84% accuracy respectively. This work also investigated the impact of the COVID-19 pandemic on EV users\u27 charging behavior. This study analyzes the behavior modelled as before, after, and during COVID-19, employing data visualization using K-means and hierarchical clustering methods to identify common charging pattern with connection and disconnection time of the vehicles. K-means clustering proves to be more effective in all three scenarios modeled with a high silhouette index. Furthermore, prediction of collective charging session duration is achieved using ML Models, RF and XgBoost which achieved a MAPE of 14.6% and 15.1% respectively

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    A new battery-charging method suggested by molecular dynamics simulations

    Full text link
    Based on large-scale molecular dynamics simulations, we propose a new charging method that should be capable of charging a Lithium-ion battery in a fraction of the time needed when using traditional methods. This charging method uses an additional applied oscillatory electric field. Our simulation results show that this charging method offers a great reduction in the average intercalation time for Li+ ions, which dominates the charging time. The oscillating field not only increases the diffusion rate of Li+ ions in the electrolyte but, more importantly, also enhances intercalation by lowering the corresponding overall energy barrier.Comment: 11 pages, 5 figure

    Detection of Lying Electrical Vehicles in Charging Coordination Application Using Deep Learning

    Full text link
    The simultaneous charging of many electric vehicles (EVs) stresses the distribution system and may cause grid instability in severe cases. The best way to avoid this problem is by charging coordination. The idea is that the EVs should report data (such as state-of-charge (SoC) of the battery) to run a mechanism to prioritize the charging requests and select the EVs that should charge during this time slot and defer other requests to future time slots. However, EVs may lie and send false data to receive high charging priority illegally. In this paper, we first study this attack to evaluate the gains of the lying EVs and how their behavior impacts the honest EVs and the performance of charging coordination mechanism. Our evaluations indicate that lying EVs have a greater chance to get charged comparing to honest EVs and they degrade the performance of the charging coordination mechanism. Then, an anomaly based detector that is using deep neural networks (DNN) is devised to identify the lying EVs. To do that, we first create an honest dataset for charging coordination application using real driving traces and information revealed by EV manufacturers, and then we also propose a number of attacks to create malicious data. We trained and evaluated two models, which are the multi-layer perceptron (MLP) and the gated recurrent unit (GRU) using this dataset and the GRU detector gives better results. Our evaluations indicate that our detector can detect lying EVs with high accuracy and low false positive rate

    A conceptual V2G aggregation platform

    Get PDF
    In this work is proposed the design of a system to create and handle an Electric Vehicle (EV) community, based on social networks collaborative approach and a credit mechanism to incentive participation and divide profits. This system is part of a V2G (Vehicle-to-Grid) module that allows EV owners to be aggregated in communities and participate in the electricity market. With this system it is possible for the EV owners to win money while the EVs are parked and plugged, delivering back to the electrical grid part of the energy stored in the batteries, increasing the attractiveness of EVs.Fundação para a Ciência e a Tecnologia (FCT) - Project MIT-Pt/EDAM-SMS/0030/2008.MIT-Portugal Progra
    corecore