23,125 research outputs found

    Multi-learner based recursive supervised training

    Get PDF
    In this paper, we propose the Multi-Learner Based Recursive Supervised Training (MLRT) algorithm which uses the existing framework of recursive task decomposition, by training the entire dataset, picking out the best learnt patterns, and then repeating the process with the remaining patterns. Instead of having a single learner to classify all datasets during each recursion, an appropriate learner is chosen from a set of three learners, based on the subset of data being trained, thereby avoiding the time overhead associated with the genetic algorithm learner utilized in previous approaches. In this way MLRT seeks to identify the inherent characteristics of the dataset, and utilize it to train the data accurately and efficiently. We observed that empirically, MLRT performs considerably well as compared to RPHP and other systems on benchmark data with 11% improvement in accuracy on the SPAM dataset and comparable performances on the VOWEL and the TWO-SPIRAL problems. In addition, for most datasets, the time taken by MLRT is considerably lower than the other systems with comparable accuracy. Two heuristic versions, MLRT-2 and MLRT-3 are also introduced to improve the efficiency in the system, and to make it more scalable for future updates. The performance in these versions is similar to the original MLRT system

    Missing Value Imputation With Unsupervised Backpropagation

    Full text link
    Many data mining and data analysis techniques operate on dense matrices or complete tables of data. Real-world data sets, however, often contain unknown values. Even many classification algorithms that are designed to operate with missing values still exhibit deteriorated accuracy. One approach to handling missing values is to fill in (impute) the missing values. In this paper, we present a technique for unsupervised learning called Unsupervised Backpropagation (UBP), which trains a multi-layer perceptron to fit to the manifold sampled by a set of observed point-vectors. We evaluate UBP with the task of imputing missing values in datasets, and show that UBP is able to predict missing values with significantly lower sum-squared error than other collaborative filtering and imputation techniques. We also demonstrate with 24 datasets and 9 supervised learning algorithms that classification accuracy is usually higher when randomly-withheld values are imputed using UBP, rather than with other methods

    Deep Learning: Our Miraculous Year 1990-1991

    Full text link
    In 2020, we will celebrate that many of the basic ideas behind the deep learning revolution were published three decades ago within fewer than 12 months in our "Annus Mirabilis" or "Miraculous Year" 1990-1991 at TU Munich. Back then, few people were interested, but a quarter century later, neural networks based on these ideas were on over 3 billion devices such as smartphones, and used many billions of times per day, consuming a significant fraction of the world's compute.Comment: 37 pages, 188 references, based on work of 4 Oct 201

    Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor Methods

    Get PDF
    Training neural networks is a challenging non-convex optimization problem, and backpropagation or gradient descent can get stuck in spurious local optima. We propose a novel algorithm based on tensor decomposition for guaranteed training of two-layer neural networks. We provide risk bounds for our proposed method, with a polynomial sample complexity in the relevant parameters, such as input dimension and number of neurons. While learning arbitrary target functions is NP-hard, we provide transparent conditions on the function and the input for learnability. Our training method is based on tensor decomposition, which provably converges to the global optimum, under a set of mild non-degeneracy conditions. It consists of simple embarrassingly parallel linear and multi-linear operations, and is competitive with standard stochastic gradient descent (SGD), in terms of computational complexity. Thus, we propose a computationally efficient method with guaranteed risk bounds for training neural networks with one hidden layer.Comment: The tensor decomposition analysis is expanded, and the analysis of ridge regression is added for recovering the parameters of last layer of neural networ
    corecore