1,157 research outputs found

    Gait analysis methods in rehabilitation

    Get PDF
    Introduction: Brand's four reasons for clinical tests and his analysis of the characteristics of valid biomechanical tests for use in orthopaedics are taken as a basis for determining what methodologies are required for gait analysis in a clinical rehabilitation context. Measurement methods in clinical gait analysis: The state of the art of optical systems capable of measuring the positions of retro-reflective markers placed on the skin is sufficiently advanced that they are probably no longer a significant source of error in clinical gait analysis. Determining the anthropometry of the subject and compensating for soft tissue movement in relation to the under-lying bones are now the principal problems. Techniques for using functional tests to determine joint centres and axes of rotation are starting to be used successfully. Probably the last great challenge for optical systems is in using computational techniques to compensate for soft tissue measurements. In the long term future it is possible that direct imaging of bones and joints in three dimensions (using MRI or fluoroscopy) may replace marker based systems. Methods for interpreting gait analysis data: There is still not an accepted general theory of why we walk the way we do. In the absence of this, many explanations of walking address the mechanisms by which specific movements are achieved by particular muscles. A whole new methodology is developing to determine the functions of individual muscles. This needs further development and validation. A particular requirement is for subject specific models incorporating 3-dimensional imaging data of the musculo-skeletal anatomy with kinematic and kinetic data. Methods for understanding the effects of intervention: Clinical gait analysis is extremely limited if it does not allow clinicians to choose between alternative possible interventions or to predict outcomes. This can be achieved either by rigorously planned clinical trials or using theoretical models. The evidence base is generally poor partly because of the limited number of prospective clinical trials that have been completed and more such studies are essential. Very recent work has started to show the potential of using models of the mechanisms by which people with pathology walk in order to simulate different potential interventions. The development of these models offers considerable promise for new clinical applications of gait analysis

    Physics-based simulations to predict the differential effects of motor control and musculoskeletal deficits on gait dysfunction in cerebral palsy : a retrospective case study

    Get PDF
    Physics-based simulations of walking have the theoretical potential to support clinical decision-making by predicting the functional outcome of treatments in terms of walking performance. Yet before using such simulations in clinical practice, their ability to identify the main treatment targets in specific patients needs to be demonstrated. In this study, we generated predictive simulations of walking with a medical imaging based neuro-musculoskeletal model of a child with cerebral palsy presenting crouch gait. We explored the influence of altered muscle-tendon properties, reduced neuromuscular control complexity, and spasticity on gait dysfunction in terms of joint kinematics, kinetics, muscle activity, and metabolic cost of transport. We modeled altered muscle-tendon properties by personalizing Hill-type muscle-tendon parameters based on data collected during functional movements, simpler neuromuscular control by reducing the number of independent muscle synergies, and spasticity through delayed muscle activity feedback from muscle force and force rate. Our simulations revealed that, in the presence of aberrant musculoskeletal geometries, altered muscle-tendon properties rather than reduced neuromuscular control complexity and spasticity were the primary cause of the crouch gait pattern observed for this child, which is in agreement with the clinical examination. These results suggest that muscle-tendon properties should be the primary target of interventions aiming to restore an upright gait pattern for this child. This suggestion is in line with the gait analysis following muscle-tendon property and bone deformity corrections. Future work should extend this single case analysis to more patients in order to validate the ability of our physics-based simulations to capture the gait patterns of individual patients pre- and post-treatment. Such validation would open the door for identifying targeted treatment strategies with the aim of designing optimized interventions for neuro-musculoskeletal disorders

    Stretch hyperreflexia in children with cerebral palsy:Assessment - Contextualization - Modulation

    Get PDF
    Cerebral palsy (CP) is a neurological disorder and the most frequent cause of motor impairment in children in Europe. Around 85% of children with CP experience stretch hyperreflexia, also known as “spasticity”. Stretch hyperreflexia is an excessive response to muscle stretch, leading to increased joint resistance. The joint hyper-resistance causes limitations in activities such as walking. Multiple methods have been developed to measure stretch hyperreflexia, but evidence supporting the use of these methods for diagnostics and treatment evaluation in children with CP is insufficient. Furthermore, most methods are designed to assess stretch reflexes in passive conditions, which might not translate to the limitations encountered due to stretch reflexes during activities. Furthermore, while a broad range of stretch hyperreflexia treatments is available, many are invasive, non-specific, or temporary and might have adverse side effects. Training methods to reduce stretch reflexes using biofeedback are promising non-invasive methods with potential long-term sustained effects. Still, clinical feasibility needs to be improved before implementation in clinical rehabilitation of children with CP. This thesis aimed to develop methods to assess stretch hyperreflexia of the calf muscles during passive conditions, as well as in the context of walking. Additionally, this thesis aimed to develop clinically feasible methods to modulate stretch hyperreflexia in the calf muscle of children with CP. The outcomes are described in eight different studies presented in this thesis. All in all, the work presented in this thesis shows that sagittal plane clinical gait analysis can be performed using the human body model and can be complemented with ultrasound imaging of the calf muscle. Motorized methods to assess stretch hyperreflexia in passive conditions might be useful for evaluation in adults after SCI/Stroke. Still, limitations regarding feasibility and validity limit clinical application for children with CP. Furthermore, this thesis provides additional evidence that the deviating muscle activation patterns during walking, particularly the increased activation around initial contact, are caused by stretch hyper-reflexes in children with CP. The deviating muscle activation patterns, with increased activation during early stance and reduced activation around push-off, can be modulated within one session by several children with CP. Therefore, the next step is to develop a training program to modulate the activation pattern and potentially decrease stretch hyper-reflexes in children with CP to improve the gait patter

    Gait analysis of paediatric patients with hemiparesis

    Get PDF
    The main objective of this Final Project for the Bachelor Degree in Industrial Technology Engineering is to study how the feedback device Walking o’Clock modifies gait pattern of paediatric patients with hemiparesis. The project has been developed in collaboration with personnel of Sant Joan de Déu Hospital (HSJD), that selected the three patients involved in the study. The gait of these patients was captured in the UPC Biomechanics Laboratory, and the kinematic analysis was performed using OpenSim, a free software tool developed by Stanford University that is widely used by the scientific community. Walking o’Clock, by Draco Systems, is an electronic device with an inertial measurement unit (IMU). It was used to measure thigh orientation in the study, aided by the engineer who created this product. By measuring this orientation, the physiotherapist would choose what kind of feedback the patient should be put under to. The patients’ movement was analysed under three different situations: natural gait, gait using the device (with the feedback chosen) and gait after using the device (after feedback). Four angular coordinates in the sagittal plane (hip flexion, pelvic tilt, knee flexion and ankle dorsiflexion) were analysed and compared. From the results, it was shown that the device modifies the gait pattern. However, depending on the patient and the feedback, the walking kinematics was modified in different ways. In some aspects, an improvement was found for the selected paediatric patients. This report describes all the processes involved in the analysis, as well as the methodology used. To obtain the motion data, the human body has been modelled as a multibody system with rigid bodies and ideal joints with different degrees of freedom. The process to export the kinematics data using OpenSim is explained in detail. From the position of each body, inverse kinematics determines the configuration (position and orientation) of the multibody system along time

    Biomechanics

    Get PDF
    Biomechanics is a vast discipline within the field of Biomedical Engineering. It explores the underlying mechanics of how biological and physiological systems move. It encompasses important clinical applications to address questions related to medicine using engineering mechanics principles. Biomechanics includes interdisciplinary concepts from engineers, physicians, therapists, biologists, physicists, and mathematicians. Through their collaborative efforts, biomechanics research is ever changing and expanding, explaining new mechanisms and principles for dynamic human systems. Biomechanics is used to describe how the human body moves, walks, and breathes, in addition to how it responds to injury and rehabilitation. Advanced biomechanical modeling methods, such as inverse dynamics, finite element analysis, and musculoskeletal modeling are used to simulate and investigate human situations in regard to movement and injury. Biomechanical technologies are progressing to answer contemporary medical questions. The future of biomechanics is dependent on interdisciplinary research efforts and the education of tomorrow’s scientists

    Technological advancements in the analysis of human motion and posture management through digital devices

    Get PDF
    Technological development of motion and posture analyses is rapidly progressing, especially in rehabilitation settings and sport biomechanics. Consequently, clear discrimination among different measurement systems is required to diversify their use as needed. This review aims to resume the currently used motion and posture analysis systems, clarify and suggest the appropriate approaches suitable for specific cases or contexts. The currently gold standard systems of motion analysis, widely used in clinical settings, present several limitations related to marker placement or long procedure time. Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies, especially outside laboratories. Similarly, new posture analysis techniques are emerging, often driven by the need for fast and non-invasive methods to obtain high-precision results. These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies. The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient. Herein, these devices and their uses are described, providing researchers, clinicians, orthopedics, physical therapists, and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis, therapy, and prevention

    Kinetic relationships between ankle plantar flexor and hip flexor power during gait in mildly affected adults with spastic hemiplegic and diplegic cerebral palsy - A case series study based on a ballistic strength training rehabilitation program

    Get PDF
    Postponed access: the file will be accessible after 2021-05-15Background: In normal gait, the ankle plantar flexors provide most propulsive energy during push-off, with smaller contribution of hip flexors. However, the interplay between these two joints remains unclear in spastic cerebral palsy. The objective of this study was to evaluate the kinetic relationship between the ankle plantar flexor and hip flexor power in late stance of gait (A2/H3) in mildly affected adults with spastic cerebral palsy. By implementing a ballistic strength training program, it was hypothesized that these exercises would exaggerate ankle plantar flexor power so the need for hip flexor power compensation would decrease, and thereby result in an increased A2/H3 ratio. Method: Ten adults with spastic hemiplegic and diplegic cerebral palsy, Gross Motor Function Classification System I-II, was recruited to attend an eight week ballistic strength training program mainly prescribed to most paretic limb. Three-dimensional gait analysis with a force plate was used to investigate the impact on ankle and hip power generation in push-off before, during and after intervention. At least three gait trials at self-selected speed was analyzed for each limb to calculate peak ankle and hip flexor power in the sagittal plane and relationship between them (A2/H3 ratio). Results: 7 participants completed the study protocol. 6 out of these 7 participants increased A2/H3 ratio on the most paretic limb, while 5 increased on uninvolved limb. As expected, the change was more evident on the most paretic limb compared to the uninvolved limb. Conclusion: Findings from this study provide a better understanding of the interplay between power patterns in the ankle and hip joint in spastic cerebral palsy with a possible implication to clinical practice. However, the results cannot direct any casual relationships between change in A2/H3 ratio and ballistic strength training. Until evidence is found, we assume that ballistic strength training is feasible to alter A2/H3 ratio in adults with spastic cerebral palsy, yet further analytic investigation is needed.MAMD-HELSEFYST39

    Human Gait Model Development for Objective Analysis of Pre/Post Gait Characteristics Following Lumbar Spine Surgery

    Get PDF
    Although multiple advanced tools and methods are available for gait analysis, the gait and its related disorders are usually assessed by visual inspection in the clinical environment. This thesis aims to introduce a gait analysis system that provides an objective method for gait evaluation in clinics and overcomes the limitations of the current gait analysis systems. Early identification of foot drop, a common gait disorder, would become possible using the proposed methodology

    Biomechanical Evaluation of an Optical System for Quantitative Human Motion Analysis

    Get PDF
    An eight-camera Optitrack motion capture system was evaluated by performing static, linear dynamic, and angular dynamic calibrations using marker distances associated with upper and lower extremity gait and wheelchair models. Data were analyzed to determine accuracy and resolution within a defined capture volume using a standard Cartesian reference system. Two additional cameras along with AMASS and Visual3D (C-Motion, Inc., Germantown, MD) biomechanical modeling software were used to determine joint kinematics at the pelvis, hip, knee, and ankle of ten control subjects (mean age 21.5 ± 1.65 years). The same data were processed through Nexus (Vicon Motion Systems, Oxford, England) modeling software. The joint angle data was statistically compared between the two systems using a variance components model which determined the variability between maximum, minimum, and range values. Static accuracy ranged from 99.31% to 99.90%. Static resolution ranged from 0.04 ± 0.15 mm to 0.63 ± 0.15 mm at the 0.05 level of significance. The dynamic accuracy ranged from 94.82% to 99.77 %, and dynamic resolution ranged from 0.09 ± 0.26 mm to 0.61 ± 0.31 mm at the 0.05 level of significance. These values are comparable to those reported for a standard Vicon 524 (Vicon Motion Systems, Oxford, England) motion analysis system. Gait cycle maximum, minimum, and range values showed no significant difference when comparing Visual3D and Nexus at the pelvis, hip, and knee. Significant differences were seen at the tibia (rotation) and foot due to foot model variations between the two systems. The results support application of the lower cost Optitrack cameras and Visual3D software for 3D kinematic assessment of lower extremity motion during gait. Additional potential applications supported by these findings include other lower extremity models, assisted ambulation, and wheelchair mobility
    • …
    corecore