279 research outputs found

    Optical Network Models and their Application to Software-Defined Network Management

    Get PDF
    Software-defined networking is finding its way into optical networks. Here, it promises a simplification and unification of network management for optical networks allowing automation of operational tasks despite the highly diverse and vendor-specific commercial systems and the complexity and analog nature of optical transmission. A fundamental component for software-defined optical networking are common abstractions and interfaces. Currently, a number of models for optical networks are available. They all claim to provide open and vendor agnostic management of optical equipment. In this work, we survey and compare the most important models and propose an intent interface for creating virtual topologies that is integrated in the existing model ecosystem.Comment: Parts of the presented work has received funding from the European Commission within the H2020 Research and Innovation Programme, under grant agreeement n.645127, project ACIN

    Power consumption modeling in optical multilayer networks

    Get PDF
    The evaluation of and reduction in energy consumption of backbone telecommunication networks has been a popular subject of academic research for the last decade. A critical parameter in these studies is the power consumption of the individual network devices. It appears that across different studies, a wide range of power values for similar equipment is used. This is a result of the scattered and limited availability of power values for optical multilayer network equipment. We propose reference power consumption values for Internet protocol/multiprotocol label switching, Ethernet, optical transport networking and wavelength division multiplexing equipment. In addition we present a simplified analytical power consumption model that can be used for large networks where simulation is computationally expensive or unfeasible. For illustration and evaluation purpose, we apply both calculation approaches to a case study, which includes an optical bypass scenario. Our results show that the analytical model approximates the simulation result to over 90% or higher and that optical bypass potentially can save up to 50% of power over a non-bypass scenario

    Optical network planning for static applications

    Get PDF
    Traffic demands on optical transport networks continue to grow, both in numbers and in size, at an incredible rate. Consequently, the efficient use of network resources has never been as important as today. A possible solution to this problem is to plan, develop and implement efficient algorithms for static and/or dynamic applications in order to minimize the probability of blocking and/or minimizing the number of wavelengths. Static Routing and Wavelength Assignment (RWA) algorithms use a given set of optical path requests and are intended to provide a long-term plan for future traffic. Static RWA algorithms are important for current and future WDM (Wavelength-Division Multiplexing) networks, especially when there is no wavelength conversion, the network is highly connected or the traffic load is moderate to high. In this dissertation, we propose to develop an optical network planning tool capable of choosing the best optical path and assigning as few wavelengths as possible. This tool is structured in five phases: in the first phase, the network physical topology is defined by the adjacency matrix or by the cost matrix and the logical topology is defined by the traffic matrix; in a second phase, the Dijkstra algorithm is used to find the shortest path for each connection; in the third phase, the traffic routing is accomplished considering one traffic unit between the source and destination nodes; in the fourth phase, the paths are ordered using various ordering strategies, such as Shortest Path First, Longest Path First and Random Path Order; finally, in the fifth phase, the heuristic algorithms for wavelength assignment, such as Graph Coloring, First-Fit and Most-Used are used. This tool is first tested on small networks (e.g. ring and mesh topologies), and then applied to real networks (e.g. COST 239, NSFNET and UBN topologies). We have concluded that the number of wavelengths calculated for each network is almost independent of the Wavelength Assignment (WA) heuristics, as well as the ordering strategy, when a full mesh logical topology is considered.Os pedidos de tráfego nas redes de transporte ópticas continuam a crescer, tanto em número como em tamanho, a um ritmo incrível. Consequentemente, a utilização eficiente dos recursos das redes nunca foi tão importante como hoje. Uma solução possível para este problema passa por planear, desenvolver e implementar algoritmos eficientes para aplicações estáticas e/ou dinâmicas de modo a minimizar a probabilidade de bloqueio e/ou minimizar o número de comprimentos de onda. Os algoritmos de encaminhamento e de atribuição de comprimentos de onda (RWA) estáticos utilizam um determinado conjunto de pedidos de caminhos ópticos e visam fornecer um plano de longo prazo para tráfego futuro. Os algoritmos RWA estáticos são importantes para as redes em multiplexagem por divisão de comprimento de onda (WDM) atuais e futuras, especialmente quando não há conversão de comprimento de onda, a rede é altamente ligada ou a carga de tráfego é de moderada a alta. Nesta dissertação, propomos desenvolver uma ferramenta de planeamento de redes ópticas capaz de escolher o melhor caminho óptico e atribuir o mínimo de comprimentos ondas possíveis. Esta ferramenta está estruturada em cinco fases: numa primeira fase é definida a topologia física de rede pela matriz das adjacências ou pela matriz de custo e a topologia lógica é definida pela matriz de tráfego; numa segunda fase é utilizado o algoritmo Dijkstra para encontrar o caminho mais curto para cada ligação; na terceira fase o encaminhamento de tráfego é realizado considerando uma unidade de tráfego entre os nós de origem e destino; na quarta fase os caminhos são ordenados tendo em conta as várias estratégias de ordenação, tais como Shortest Path First, Longest Path First e Random Path Order; finalmente, na quinta fase, os algoritmos heurísticos são utilizados para atribuição de comprimentos de onda, como Graph Coloring, First-Fit e Most-Used. Esta ferramenta é primeiramente testada em redes pequenas (por exemplo, topologias em anel e em malha), e depois é aplicada a redes reais (por exemplo, redes COST 239, NSFNET e UBN). Concluímos que o número de comprimentos de onda calculados para cada rede é quase independente da heurística para atribuição dos cumprimentos de onda, bem como da estratégia de ordenação dos caminhos, quando uma topologia lógica em malha completa é considerada

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    Cost-effective Information and Communication Technology (ICT) infrastructure for Tanziania

    Get PDF
    The research conducted an Information and Communication Technology (ICT) field survey, the results revealed that Tanzania is still lagging behind in the ICT sector due to the lack of an internationally connected terrestrial ICT infrastructure; Internet connectivity to the rest of the world is via expensive satellite links, thus leaving the majority of the population unable to access the Internet services due to its high cost. Therefore, an ICT backbone infrastructure is designed that exploits optical DWDM network technology, which un-locks bandwidth bottlenecks and provides higher capacity which will provide ICT services such as Internet, voice, videos and other multimedia interactions at an affordable cost to the majority of the people who live in the urban and rural areas of Tanzania. The research analyses and compares the performance, and system impairments, in a DWDM system at data transmission rates of 2.5 Gb/s and 10 Gb/s per wavelength channel. The simulation results show that a data transmission rate of 2.5 Gb/s can be successfully transmitted over a greater distance than 10 Gb/s with minimum system impairments. Also operating at the lower data rate delivers a good system performance for the required ICT services. A forty-channel DWDM system will provide a bandwidth of 100 Gb/s. A cost analysis demonstrates the economic worth of incorporating existing optical fibre installations into an optical DWDM network for the creation of an affordable ICT backbone infrastructure; this approach is compared with building a completely new optical fibre DWDM network or a SONET/SDH network. The results show that the ICT backbone infrastructure built with existing SSMF DWDM network technology is a good investment, in terms of profitability, even if the Internet charges are reduced to half current rates. The case for building a completely new optical fibre DWDM network or a SONET/SDH network is difficult to justify using current financial data

    Migration strategies toward all optical metropolitan access rings

    Full text link
    This paper was published in Journal of Lightwave Technology and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the IEEE website: http://dx.doi.org/10.1109/JLT.2007.901325. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Nowadays, network operators are steadily deploying optical circuit switching (OCS) equipment in their metropolitan networks in order to cope with traffic increase and, most importantly, in order to reduce capital expenditures and operational expenditures of existing active technologies. On the other hand, optical burst switching (OBS) technology is expected to become mature in the medium term, and it may be used as an alternative to current OCS networks due to its potential advantages in terms of bandwidth allocation granularity. While OBS is being extensively studied in the literature, little attention has been paid in conducting a comparative analysis of OBS versus OCS, especially concerning cost analysis. In this paper, we provide a comparative analysis of OBS versus OCS as an evolutionary technology for all-optical rings in the metropolitan-access network. This paper is specifically targeted toward optimizing the number of optoelectronic receivers and wavelengths with real traffic matrices from the metropolitan rings in Madrid, Spain. Such matrices also include traffic projections of foreseeable broadband services, which are based on a market analysis from the largest operator in Spain. Our findings show that OCS might be more efficient than OBS in the metro-access segment, which is characterized by a highly centralized traffic pattern. However, the more distributed the traffic is, the more efficient the OBS is as well. Consequently, OBS might be better suited to metro-core networks, which show a more distributed and dynamic traffic pattern.The authors would like to thank the e-Photon/ONe+ network of excellenc

    A survey of trends and motivations regarding Communication Service Providers' metro area network implementations

    Full text link
    Relevance of research on telecommunications networks is predicated upon the implementations which it explicitly claims or implicitly subsumes. This paper supports researchers through a survey of Communications Service Providers current implementations within the metro area, and trends that are expected to shape the next-generation metro area network. The survey is composed of a quantitative component, complemented by a qualitative component carried out among field experts. Among the several findings, it has been found that service providers with large subscriber base sizes, are less agile in their response to technological change than those with smaller subscriber base sizes: thus, copper media are still an important component in the set of access network technologies. On the other hand, service providers with large subscriber base sizes are strongly committed to deploying distributed access architectures, notably using remote access nodes like remote OLT and remote MAC-PHY. This study also shows that the extent of remote node deployment for multi-access edge computing is about the same as remote node deployment for distributed access architectures, indicating that these two aspects of metro area networks are likely to be co-deployed.Comment: 84 page

    The Design of FTTH Network

    Get PDF
    The aim of this thesis is to explain the problems of optical access networks with wavelength division multiplexers, main purpose is to demonstrate the difference between theoretical and real measurement. The work is divided into several thematic areas. The introduction outlines the basic of telecommunications, fiber optics lasers, single mode, multimode, lasers fibers cables & cores, splitters division multiplexing system, there are known solutions discussed fundamental wavelength multiplexes and their possible combinations. The following chapter deals with the active elements such as AON, PON, which are essential part xWDM systems such as optical lasers, detectors and amplifiers. Another chapter focuses on passive elements, which form a key part of the wavelength multiplex. Methods of measurement of WDM/PON networks are discussed in the following part. The next section describes the topology used active and passive optical networks. The penultimate part of the work consists of architecture & technology of xWDM such as GPON and WDM-PON networks and comparing their transmission parameters. The final part of the paper presents the results of practical experimental measurements of optical access networks with wavelengths division multiplex while these results are compared with the theoretical output & methods of Optical lost test, OTDR & LSPM, with advantage & disadvantage of every methods. The second part of practical is the draft to the connection resident housing units of 30 houses, boarding-house (10 rooms) and 2 shops, 20 km distant from exchange. With comparing the possibilities of two options- passive and active optical network- PON system – WDM- Wave multiplex. Suggest the possibility of measuring and monitoring the created network.The aim of this thesis is to explain the problems of optical access networks with wavelength division multiplexers, main purpose is to demonstrate the difference between theoretical and real measurement. The work is divided into several thematic areas. The introduction outlines the basic of telecommunications, fiber optics lasers, single mode, multimode, lasers fibers cables & cores, splitters division multiplexing system, there are known solutions discussed fundamental wavelength multiplexes and their possible combinations. The following chapter deals with the active elements such as AON, PON, which are essential part xWDM systems such as optical lasers, detectors and amplifiers. Another chapter focuses on passive elements, which form a key part of the wavelength multiplex. Methods of measurement of WDM/PON networks are discussed in the following part. The next section describes the topology used active and passive optical networks. The penultimate part of the work consists of architecture & technology of xWDM such as GPON and WDM-PON networks and comparing their transmission parameters. The final part of the paper presents the results of practical experimental measurements of optical access networks with wavelengths division multiplex while these results are compared with the theoretical output & methods of Optical lost test, OTDR & LSPM, with advantage & disadvantage of every methods. The second part of practical is the draft to the connection resident housing units of 30 houses, boarding-house (10 rooms) and 2 shops, 20 km distant from exchange. With comparing the possibilities of two options- passive and active optical network- PON system – WDM- Wave multiplex. Suggest the possibility of measuring and monitoring the created network.

    ENERGY EFFICIENT WIRED NETWORKING

    Get PDF
    This research proposes a new dynamic energy management framework for a backbone Internet Protocol over Dense Wavelength Division Multiplexing (IP over DWDM) network. Maintaining the logical IP-layer topology is a key constraint of our architecture whilst saving energy by infrastructure sleeping and virtual router migration. The traffic demand in a Tier 2/3 network typically has a regular diurnal pattern based on people‟s activities, which is high in working hours and much lighter during hours associated with sleep. When the traffic demand is light, virtual router instances can be consolidated to a smaller set of physical platforms and the unneeded physical platforms can be put to sleep to save energy. As the traffic demand increases the sleeping physical platforms can be re-awoken in order to host virtual router instances and so maintain quality of service. Since the IP-layer topology remains unchanged throughout virtual router migration in our framework, there is no network disruption or discontinuities when the physical platforms enter or leave hibernation. However, this migration places extra demands on the optical layer as additional connections are needed to preserve the logical IP-layer topology whilst forwarding traffic to the new virtual router location. Consequently, dynamic optical connection management is needed for the new framework. Two important issues are considered in the framework, i.e. when to trigger the virtual router migration and where to move virtual router instances to? For the first issue, a reactive mechanism is used to trigger the virtual router migration by monitoring the network state. Then, a new evolutionary-based algorithm called VRM_MOEA is proposed for solving the destination physical platform selection problem, which chooses the appropriate location of virtual router instances as traffic demand varies. A novel hybrid simulation platform is developed to measure the performance of new framework, which is able to capture the functionality of the optical layer, the IP layer data-path and the IP/optical control plane. Simulation results show that the performance of network energy saving depends on many factors, such as network topology, quiet and busy thresholds, and traffic load; however, savings of around 30% are possible with typical medium-sized network topologies
    corecore