12,579 research outputs found

    Unsupervised Learning for Color Constancy

    Full text link
    Most digital camera pipelines use color constancy methods to reduce the influence of illumination and camera sensor on the colors of scene objects. The highest accuracy of color correction is obtained with learning-based color constancy methods, but they require a significant amount of calibrated training images with known ground-truth illumination. Such calibration is time consuming, preferably done for each sensor individually, and therefore a major bottleneck in acquiring high color constancy accuracy. Statistics-based methods do not require calibrated training images, but they are less accurate. In this paper an unsupervised learning-based method is proposed that learns its parameter values after approximating the unknown ground-truth illumination of the training images, thus avoiding calibration. In terms of accuracy the proposed method outperforms all statistics-based and many learning-based methods. An extension of the method is also proposed, which learns the needed parameters from non-calibrated images taken with one sensor and which can then be successfully applied to images taken with another sensor. This effectively enables inter-camera unsupervised learning for color constancy. Additionally, a new high quality color constancy benchmark dataset with 1707 calibrated images is created, used for testing, and made publicly available. The results are presented and discussed. The source code and the dataset are available at http://www.fer.unizg.hr/ipg/resources/color_constancy/.Comment: 15 pages, 16 figure

    Learning Invariant Color Features for Person Re-Identification

    Full text link
    Matching people across multiple camera views known as person re-identification, is a challenging problem due to the change in visual appearance caused by varying lighting conditions. The perceived color of the subject appears to be different with respect to illumination. Previous works use color as it is or address these challenges by designing color spaces focusing on a specific cue. In this paper, we propose a data driven approach for learning color patterns from pixels sampled from images across two camera views. The intuition behind this work is that, even though pixel values of same color would be different across views, they should be encoded with the same values. We model color feature generation as a learning problem by jointly learning a linear transformation and a dictionary to encode pixel values. We also analyze different photometric invariant color spaces. Using color as the only cue, we compare our approach with all the photometric invariant color spaces and show superior performance over all of them. Combining with other learned low-level and high-level features, we obtain promising results in ViPER, Person Re-ID 2011 and CAVIAR4REID datasets

    Deep Structured-Output Regression Learning for Computational Color Constancy

    Full text link
    Computational color constancy that requires esti- mation of illuminant colors of images is a fundamental yet active problem in computer vision, which can be formulated into a regression problem. To learn a robust regressor for color constancy, obtaining meaningful imagery features and capturing latent correlations across output variables play a vital role. In this work, we introduce a novel deep structured-output regression learning framework to achieve both goals simultaneously. By borrowing the power of deep convolutional neural networks (CNN) originally designed for visual recognition, the proposed framework can automatically discover strong features for white balancing over different illumination conditions and learn a multi-output regressor beyond underlying relationships between features and targets to find the complex interdependence of dif- ferent dimensions of target variables. Experiments on two public benchmarks demonstrate that our method achieves competitive performance in comparison with the state-of-the-art approaches

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    Learning Perspective Undistortion of Portraits

    Full text link
    Near-range portrait photographs often contain perspective distortion artifacts that bias human perception and challenge both facial recognition and reconstruction techniques. We present the first deep learning based approach to remove such artifacts from unconstrained portraits. In contrast to the previous state-of-the-art approach, our method handles even portraits with extreme perspective distortion, as we avoid the inaccurate and error-prone step of first fitting a 3D face model. Instead, we predict a distortion correction flow map that encodes a per-pixel displacement that removes distortion artifacts when applied to the input image. Our method also automatically infers missing facial features, i.e. occluded ears caused by strong perspective distortion, with coherent details. We demonstrate that our approach significantly outperforms the previous state-of-the-art both qualitatively and quantitatively, particularly for portraits with extreme perspective distortion or facial expressions. We further show that our technique benefits a number of fundamental tasks, significantly improving the accuracy of both face recognition and 3D reconstruction and enables a novel camera calibration technique from a single portrait. Moreover, we also build the first perspective portrait database with a large diversity in identities, expression and poses, which will benefit the related research in this area.Comment: 13 pages, 15 figure

    The Past and the Present of the Color Checker Dataset Misuse

    Full text link
    The pipelines of digital cameras contain a part for computational color constancy, which aims to remove the influence of the illumination on the scene colors. One of the best known and most widely used benchmark datasets for this problem is the Color Checker dataset. However, due to the improper handling of the black level in its images, this dataset has been widely misused and while some recent publications tried to alleviate the problem, they nevertheless erred and created additional wrong data. This paper gives a history of the Color Checker dataset usage, it describes the origins and reasons for its misuses, and it explains the old and new mistakes introduced in the most recent publications that tried to handle the issue. This should, hopefully, help to prevent similar future misuses.Comment: 5 pages, 4 figure

    Mimicking the In-Camera Color Pipeline for Camera-Aware Object Compositing

    Full text link
    We present a method for compositing virtual objects into a photograph such that the object colors appear to have been processed by the photo's camera imaging pipeline. Compositing in such a camera-aware manner is essential for high realism, and it requires the color transformation in the photo's pipeline to be inferred, which is challenging due to the inherent one-to-many mapping that exists from a scene to a photo. To address this problem for the case of a single photo taken from an unknown camera, we propose a dual-learning approach in which the reverse color transformation (from the photo to the scene) is jointly estimated. Learning of the reverse transformation is used to facilitate learning of the forward mapping, by enforcing cycle consistency of the two processes. We additionally employ a feature sharing schema to extract evidence from the target photo in the reverse mapping to guide the forward color transformation. Our dual-learning approach achieves object compositing results that surpass those of alternative techniques

    Color Constancy Convolutional Autoencoder

    Full text link
    In this paper, we study the importance of pre-training for the generalization capability in the color constancy problem. We propose two novel approaches based on convolutional autoencoders: an unsupervised pre-training algorithm using a fine-tuned encoder and a semi-supervised pre-training algorithm using a novel composite-loss function. This enables us to solve the data scarcity problem and achieve competitive, to the state-of-the-art, results while requiring much fewer parameters on ColorChecker RECommended dataset. We further study the over-fitting phenomenon on the recently introduced version of INTEL-TUT Dataset for Camera Invariant Color Constancy Research, which has both field and non-field scenes acquired by three different camera models.Comment: 6 pages, 1 figure, 3 table

    On Finding Gray Pixels

    Full text link
    We propose a novel grayness index for finding gray pixels and demonstrate its effectiveness and efficiency in illumination estimation. The grayness index, GI in short, is derived using the Dichromatic Reflection Model and is learning-free. GI allows to estimate one or multiple illumination sources in color-biased images. On standard single-illumination and multiple-illumination estimation benchmarks, GI outperforms state-of-the-art statistical methods and many recent deep methods. GI is simple and fast, written in a few dozen lines of code, processing a 1080p image in ~0.4 seconds with a non-optimized Matlab code.Comment: appear in IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019. 9 pages, 7 figures. this article is an extension of arXiv:1803.0832

    Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset

    Full text link
    Underwater images suffer from color distortion and low contrast, because light is attenuated while it propagates through water. Attenuation under water varies with wavelength, unlike terrestrial images where attenuation is assumed to be spectrally uniform. The attenuation depends both on the water body and the 3D structure of the scene, making color restoration difficult. Unlike existing single underwater image enhancement techniques, our method takes into account multiple spectral profiles of different water types. By estimating just two additional global parameters: the attenuation ratios of the blue-red and blue-green color channels, the problem is reduced to single image dehazing, where all color channels have the same attenuation coefficients. Since the water type is unknown, we evaluate different parameters out of an existing library of water types. Each type leads to a different restored image and the best result is automatically chosen based on color distribution. We collected a dataset of images taken in different locations with varying water properties, showing color charts in the scenes. Moreover, to obtain ground truth, the 3D structure of the scene was calculated based on stereo imaging. This dataset enables a quantitative evaluation of restoration algorithms on natural images and shows the advantage of our method
    • ā€¦
    corecore