38,524 research outputs found

    Using a Combination of Measurement Tools to Extract Metrics from Open Source Projects

    Get PDF
    Software measurement can play a major role in ensuring the quality and reliability of software products. The measurement activities require appropriate tools to collect relevant metric data. Currently, there are several such tools available for software measurement. The main objective of this paper is to provide some guidelines in using a combination of multiple measurement tools especially for products built using object-oriented techniques and languages. In this paper, we highlight three tools for collecting metric data, in our case from several Java-based open source projects. Our research is currently based on the work of Card and Glass, who argue that design complexity measures (data complexity and structural complexity) are indicators/predictors of procedural/cyclomatic complexity (decision counts) and errors (discovered from system tests). Their work was centered on structured design and our work is with object-oriented designs and the metrics we use parallel those of Card and Glass, being, Henry and Kafura's Information Flow Metrics, McCabe's Cyclomatic Complexity, and Chidamber and Kemerer Object-oriented Metrics

    Can we avoid high coupling?

    Get PDF
    It is considered good software design practice to organize source code into modules and to favour within-module connections (cohesion) over between-module connections (coupling), leading to the oft-repeated maxim "low coupling/high cohesion". Prior research into network theory and its application to software systems has found evidence that many important properties in real software systems exhibit approximately scale-free structure, including coupling; researchers have claimed that such scale-free structures are ubiquitous. This implies that high coupling must be unavoidable, statistically speaking, apparently contradicting standard ideas about software structure. We present a model that leads to the simple predictions that approximately scale-free structures ought to arise both for between-module connectivity and overall connectivity, and not as the result of poor design or optimization shortcuts. These predictions are borne out by our large-scale empirical study. Hence we conclude that high coupling is not avoidable--and that this is in fact quite reasonable

    Class movement and re-location: An empirical study of Java inheritance evolution

    Get PDF
    This is the post-print version of the final paper published in Journal of Systems and Software. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2009 Elsevier B.V.Inheritance is a fundamental feature of the Object-Oriented (OO) paradigm. It is used to promote extensibility and reuse in OO systems. Understanding how systems evolve, and specifically, trends in the movement and re-location of classes in OO hierarchies can help us understand and predict future maintenance effort. In this paper, we explore how and where new classes were added as well as where existing classes were deleted or moved across inheritance hierarchies from multiple versions of four Java systems. We observed first, that in one of the studied systems the same set of classes was continuously moved across the inheritance hierarchy. Second, in the same system, the most frequent changes were restricted to just one sub-part of the overall system. Third, that a maximum of three levels may be a threshold when using inheritance in a system; beyond this level very little activity was observed, supporting earlier theories that, beyond three levels, complexity becomes overwhelming. We also found evidence of ‘collapsing’ hierarchies to bring classes up to shallower levels. Finally, we found that larger classes and highly coupled classes were more frequently moved than smaller and less coupled classes. Statistical evidence supported the view that larger classes and highly coupled classes were less cohesive than smaller classes and lowly coupled classes and were thus more suitable candidates for being moved (within an hierarchy)

    Weighted Class Complexity: A Measure of Complexity for Object Oriented System

    Get PDF
    Software complexity metrics are used to predict critical information about reliability and maintainability of software systems. Object oriented software development requires a different approach to software complexity metrics. In this paper, we propose a metric to compute the structural and cognitive complexity of class by associating a weight to the class, called as Weighted Class Complexity (WCC). On the contrary, of the other metrics used for object oriented systems, proposed metric calculates the complexity of a class due to methods and attributes in terms of cognitive weight. The proposed metric has been demonstrated with OO examples. The theoretical and practical evaluations based on the information theory have shown that the proposed metric is on ratio scale and satisfies most of the parameters required by the measurement theor

    A framework for the simulation of structural software evolution

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures

    Refactorings of Design Defects using Relational Concept Analysis

    Get PDF
    Software engineers often need to identify and correct design defects, ıe} recurring design problems that hinder development and maintenance\ud by making programs harder to comprehend and--or evolve. While detection\ud of design defects is an actively researched area, their correction---mainly\ud a manual and time-consuming activity --- is yet to be extensively\ud investigated for automation. In this paper, we propose an automated\ud approach for suggesting defect-correcting refactorings using relational\ud concept analysis (RCA). The added value of RCA consists in exploiting\ud the links between formal objects which abound in a software re-engineering\ud context. We validated our approach on instances of the <span class='textit'></span>Blob\ud design defect taken from four different open-source programs

    Object oriented design of a thermo-mechanical FEM code

    Get PDF
    An object oriented design is presented for a computer program that can perform\ud thermo-mechanically coupled analyzes. The target of the design is a \ud exible and robust\ud computer program. It should be easy to adapt and extend, re-using existing code, without\ud interfering with already established algorithms.\ud The program uses publicly available toolkits that are currently emerging as C++ pack-\ud ages. First of all the Standard C++ Library (formerly Standard Template Library) is\ud used for packing items in container classes. Secondly the matrix and vector operations\ud are derived from the Template Numerical Toolkit (TNT) and ïżœnally (not essentially for\ud the numerical part) a graphical user interface is made, based on the wxWindows package,\ud that can generate a GUI for Motif and MS-Windows with the same code.\ud Attention is given to the design of classes such as speciïżœc elements and material classes\ud based on more general classes. A hierarchy of classes is constructed where general behavior\ud is put high in the hierarchy and speciïżœc behavior low. The choice between inheritance and\ud aggregation is made at several levels
    • 

    corecore