17,462 research outputs found

    Uncertainty Updating in the Description of Coupled Heat and Moisture Transport in Heterogeneous Materials

    Full text link
    To assess the durability of structures, heat and moisture transport need to be analyzed. To provide a reliable estimation of heat and moisture distribution in a certain structure, one needs to include all available information about the loading conditions and material parameters. Moreover, the information should be accompanied by a corresponding evaluation of its credibility. Here, the Bayesian inference is applied to combine different sources of information, so as to provide a more accurate estimation of heat and moisture fields [1]. The procedure is demonstrated on the probabilistic description of heterogeneous material where the uncertainties consist of a particular value of individual material characteristic and spatial fluctuations. As for the heat and moisture transfer, it is modelled in coupled setting [2]

    Heterogeneity, High Performance Computing, Self-Organization and the Cloud

    Get PDF
    application; blueprints; self-management; self-organisation; resource management; supply chain; big data; PaaS; Saas; HPCaa

    Higher-order multi-scale deep Ritz method for multi-scale problems of authentic composite materials

    Full text link
    The direct deep learning simulation for multi-scale problems remains a challenging issue. In this work, a novel higher-order multi-scale deep Ritz method (HOMS-DRM) is developed for thermal transfer equation of authentic composite materials with highly oscillatory and discontinuous coefficients. In this novel HOMS-DRM, higher-order multi-scale analysis and modeling are first employed to overcome limitations of prohibitive computation and Frequency Principle when direct deep learning simulation. Then, improved deep Ritz method are designed to high-accuracy and mesh-free simulation for macroscopic homogenized equation without multi-scale property and microscopic lower-order and higher-order cell problems with highly discontinuous coefficients. Moreover, the theoretical convergence of the proposed HOMS-DRM is rigorously demonstrated under appropriate assumptions. Finally, extensive numerical experiments are presented to show the computational accuracy of the proposed HOMS-DRM. This study offers a robust and high-accuracy multi-scale deep learning framework that enables the effective simulation and analysis of multi-scale problems of authentic composite materials

    Models for Metal Hydride Particle Shape, Packing, and Heat Transfer

    Full text link
    A multiphysics modeling approach for heat conduction in metal hydride powders is presented, including particle shape distribution, size distribution, granular packing structure, and effective thermal conductivity. A statistical geometric model is presented that replicates features of particle size and shape distributions observed experimentally that result from cyclic hydride decreptitation. The quasi-static dense packing of a sample set of these particles is simulated via energy-based structural optimization methods. These particles jam (i.e., solidify) at a density (solid volume fraction) of 0.665+/-0.015 - higher than prior experimental estimates. Effective thermal conductivity of the jammed system is simulated and found to follow the behavior predicted by granular effective medium theory. Finally, a theory is presented that links the properties of bi-porous cohesive powders to the present systems based on recent experimental observations of jammed packings of fine powder. This theory produces quantitative experimental agreement with metal hydride powders of various compositions.Comment: 12 pages, 12 figures, 2 table
    • …
    corecore