6,230 research outputs found

    Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine

    Get PDF
    Atrial fibrillation (AF) is a serious heart arrhythmia leading to a significant increase of the risk for occurrence of ischemic stroke. Clinically, the AF episode is recognized in an electrocardiogram. However, detection of asymptomatic AF, which requires a long-term monitoring, is more efficient when based on irregularity of beat-to-beat intervals estimated by the heart rate (HR) features. Automated classification of heartbeats into AF and non-AF by means of the Lagrangian Support Vector Machine has been proposed. The classifier input vector consisted of sixteen features, including four coefficients very sensitive to beat-to-beat heart changes, taken from the fetal heart rate analysis in perinatal medicine. Effectiveness of the proposed classifier has been verified on the MIT-BIH Atrial Fibrillation Database. Designing of the LSVM classifier using very large number of feature vectors requires extreme computational efforts. Therefore, an original approach has been proposed to determine a training set of the smallest possible size that still would guarantee a high quality of AF detection. It enables to obtain satisfactory results using only 1.39% of all heartbeats as the training data. Post-processing stage based on aggregation of classified heartbeats into AF episodes has been applied to provide more reliable information on patient risk. Results obtained during the testing phase showed the sensitivity of 98.94%, positive predictive value of 98.39%, and classification accuracy of 98.86%.Web of Science203art. no. 76

    Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.

    Get PDF
    Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.This research is supported by the Center forDynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it is supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302)

    Heart beat variability analysis in perinatal brain injury and infection

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica) Universidade de Lisboa, Faculdade de Ciências, 2018Todos os anos, mais de 95 mil recém-nascidos são admitidos nas Unidades de Cuidados Intensivos Neonatais (UCIN) do Reino Unido, devido principalmente a partos prematuros ou outras complicações que pudessem ter ocorrido, como é o caso da encefalopatia hipóxico-isquémica (EHI), que assume 3% de todas as admissões nas unidades referidas. EHI é o termo que define uma complicação inesperada durante o parto, que resulta em lesões neurológicas a longo prazo e até em morte neonatal, devido à privação de oxigénio e fluxo sanguíneo ao recém-nascido durante o nascimento. Estima-se que tenha uma incidência de um a seis casos por 1000 nascimentos. Nos países desenvolvidos, a hipotermia é utilizada como método preventivo-terapêutico para esta condição. No entanto, existem dois grandes obstáculos para a obtenção da neuroprotecção pretendida e totalmente benéfica, na prática clínica. Em primeiro lugar, esta técnica é eficaz se for iniciada dentro de seis horas após o parto. Visto que o estado clínico da encefalopatia neonatal evolui nos dias posteriores ao nascimento, a sua deteção precoce é um grande desafio. Tal situação pode levar a diversos erros nas UCIN, tal como indivíduos sujeitos à terapia de hipotermia desnecessariamente, ou ainda mais grave, casos em que recém-nascidos foram inicialmente considerados como saudáveis, não tendo sido submetidos à terapia referida, apresentarem sinais de EHI após seis horas de vida. A segunda questão prende-se com o facto de a neuroprotecção poder ser perdida se o bebé estiver stressado durante o tratamento. Para além disso, não existe nenhuma ferramenta válida para a avaliação da dor dos recém-nascidos submetidos a esta terapia. Os obstáculos frisados anteriormente demonstram duas necessidades ainda não correspondidas: a carência de um método não invasivo e largamente adaptável a diferentes cenários para uma correta identificação de recém-nascidos com maior probabilidade de HIE, dentro de uma margem de seis horas após o parto, mas também um método preciso de stress em tempo real, não invasivo, que possa orientar tanto pessoal médico, como pais, de modo a oferecer um tratamento mais responsável, célere e individualizado. Deste modo, a análise do ritmo cardíaco demostra um enorme potencial para ser um biomarcador de encefalopatia neonatal, bem como um medidor de stress, através da eletrocardiografia (ECG), visto que é um importante indicador de homeostase, mas também de possíveis condições que podem afetar o sistema nervoso autónomo e, consequentemente, o equilíbrio do corpo humano. É extremamente difícil a obtenção de um parâmetro fisiológico, sem a presença de artefactos, especialmente no caso de recém-nascidos admitidos nas UCIN. Tanto no caso da aquisição de ECGs, como de outros parâmetros, existe uma maior probabilidade de o sinal ser corrompido por artefactos, visto que são longas aquisições, normalmente dias, onde o bebé é submetido a diversas examinações médicas, está rodeado de equipamentos eletrónicos, entre outros. Artefactos são definidos como uma distorção do sinal, podendo ser causados por diversas fontes, fisiológicas ou não. A sua presença nos dados adquiridos influencia e dissimula as informações corretas e reais, podendo mesmo levar a diagnósticos e opções terapêuticas erradas e perigosas para o paciente. Apesar de existirem diversos algoritmos de identificação de artefactos adequados para o sinal cardíaco adulto, são poucos os que funcionam corretamente para o de recém-nascido. Para além disso, é necessário bastante tempo tanto para o staff clínico, como para os investigadores, para o processo de visualização e identificação de artefactos no eletrocardiograma manualmente. Deste modo, o projeto desenvolvido na presente dissertação propõe um novo algoritmo de identificação e marcação de artefactos no sinal cardíaco de recém-nascidos. Para tal, foi criado um modelo híbrido de um método que tem em consideração todas as relações matemáticas de batimento para batimento cardíaco, com outro que tem como objetivo a remoção de spikes no mesmo sinal. O algoritmo final para além de cumprir com o objetivo descrito acima, é também adaptável a diferentes tipos de artefactos presentes no sinal, permitindo ao utilizador, de uma forma bastante intuitiva, escolher o tipo de parâmetros e passos a aplicar, podendo ser facilmente utilizado por profissionais de diferentes áreas. Deste modo, este algoritmo é uma mais-valia quando aplicado no processamento de sinal pretendido, evitando assim uma avaliação visual demorada de todo o sinal. Para obter a melhor performance possível, durante o desenvolvimento do algoritmo foram sempre considerados os resultados de validação, tais como exatidão, sensibilidade, entre outros. Para tal, foram analisados e comparados eletrocardiogramas de 4 recém-nascidos saudáveis e 4 recém-nascidos com encefalopatia. Todos possuíam aproximadamente 5 horas de sinal cardíaco adquirido após o nascimento, com diferentes níveis de presença de artefactos. O algoritmo final, obteve uma taxa de sensibilidade de 96.2% (±2.4%) e uma taxa de exatidão de 92.6% (±3.2%). Como se pode verificar pelos valores obtidos, o algoritmo obteve percentagens altas nos vários parâmetros de classificação, o que significa uma deteção correta. A taxa de exatidão apresenta um valor mais baixo, comparativamente ao parâmetro da sensibilidade, pois em diversas situações, normalmente perto de artefactos, os batimentos normais são considerados como artefactos, pelo algoritmo. Contudo, essa taxa não é alarmante, tendo sido considerada uma taxa reduzida, pelo pessoal médico. Após o processamento do sinal cardíaco dos grupos mencionados acima, um estudo comparativo, utilizando parâmetros da variabilidade do ritmo cardíaco, foi realizado. Diferenças significativas foram encontradas entre os dois grupos, onde o saudável assumiu sempre valores maiores. SDNN e baixa frequência foram os parâmetros que traduziram uma diferença maior entre os dois grupos, com um p-value <0.01. De modo a corresponder ao segundo obstáculo referido nesta dissertação, outro objetivo desta tese foi a criação de um algoritmo que pudesse identificar e diferenciar uma situação de stress nesta faixa etária, com recurso ao ritmo cardíaco. Um estudo multidimensional foi aplicado aos diferentes métodos de entropia utilizados nesta tese (approximate entropy, sample entropy, multiscales entopy e fuzzy entropy) de modo a estudar como os diferentes métodos de entropia interagem entre si e quais são os resultados dessa relação, especialmente na distinção de estados normais e stressantes. Para tal, a utilização de clusters foi essencial. Dado que para todos os ECGs de bebés saudáveis analisados neste projeto foram registados todas as possíveis situações de stress, como é o caso de choro, examinações médicas, mudança de posição, entre outros, foram escolhidos 10 minutos do sinal do ritmo cardíaco adquirido, antes da situação, para análise. Infelizmente, associado a um evento stressante, na maioria dos casos encontra-se uma percentagem bastante alta do sinal corrompida por artefactos. No entanto, em alguns casos foi possível observar uma clara distinção de grupos de clusters, indicando que naquele período de tempo, houve uma mudança de estado. Foi também realizado um estudo intensivo de diversos métodos de entropia aplicados ao grupo de sujeitos apresentados nesta dissertação, onde foi provado que o método mais adequado a nível de diferenciação é a Fuzzy Entropy (p=0.0078). Ainda é possível sugerir alguns aspetos e apontar algumas limitações, no âmbito de poderem ser ultrapassadas no futuro. Em primeiro lugar, é necessária a aquisição de mais eletrocardiogramas, quer de recém-nascidos saudáveis, quer com encefalopatia hipóxico-isquémica, de modo a aumentar o tamanho da amostra e, deste modo diminuir os valores do desvio-padrão em todos os parâmetros calculados. Relativamente ao estudo do stress, seria interessante, com uma amostra maior, a definição de clusters, de modo a ter uma identificação precisa de situações stressantes. Para além disso, a transformação do software atualmente escrito em MATLAB para GUI (interface gráfica do utilizador), a fim de tornar mais acessível a sua utilização por profissionais de diversas áreas.In Neonatal Intensive Care Unit (NICU), the heart rate (HR) offers significant insight into the autonomic function of sick newborns, especially with hypoxic ischemic encephalopathy condition (HIE). However, the intensity of clinical care and monitoring contributes to the electrocardiogram (ECG) to be often noisy and contaminated with artefacts from various sources. These artefacts, defined as any distortion of the signal caused by diverse sources, being physiological or non-physiological features, interfere with the characterization and subsequent evaluation of the heart rate, leading to grave consequences, both in diagnostic and therapeutic decisions. Besides, its manual inspection in the ECG trace is highly time-consuming, which is not feasible in clinical monitoring, especially in NICU. In this dissertation, it is proposed an algorithm capable of automatically detect and mark artefacts in neonatal ECG data, mainly dealing with mathematical aspects of the heart rate, starting from the raw signal. Also, it is proposed an adjacent algorithm, using complexity science applied to HR data, with the objective of identifying stress scenarios. Periods of 10-minute ECG were considered from 8 newborns (4 healthy and 4 HIE) to the identification of stress situations, whereas for the artefacts removal algorithm small portions varying in time length according to the amount of noise present in the originally 5 hours long samples were utilised. In this report it is also present several comparisons utilising heart rate parameters between healthy and HIE groups. Fuzzy Entropy was considered the best method to differentiate both groups (p=0.00078). In this report, substantial differences in heart rate variability were found between healthy and HIE groups, especially in SDNN and low frequency (p<0.01), confirming results of previous literature. For the final artefact removal algorithm, it is illustrated significant differences between raw and post-processed ECG signals. This method had a Recall rate of 96.2% (±2.4%) and a Precision Rate of 92.6% (±3.2%), demonstrating high efficiency in ECG noise removal. Regarding stress measures, associated with a stressful event, in most cases there is a high percentage of the signal corrupted by artefacts. However, in some cases it was possible to see a clear distinction between groups of clusters, indicating that in that period, there was a change of state. Not all the time segments from subjects demonstrated differences in stress stages, indicating that there is still room for improvement in the method developed

    Patient Specific Congestive Heart Failure Detection From Raw ECG signal

    Full text link
    In this study; in order to diagnose congestive heart failure (CHF) patients, non-linear second-order difference plot (SODP) obtained from raw 256 Hz sampled frequency and windowed record with different time of ECG records are used. All of the data rows are labelled with their belongings to classify much more realistically. SODPs are divided into different radius of quadrant regions and numbers of the points fall in the quadrants are computed in order to extract feature vectors. Fisher's linear discriminant, Naive Bayes, Radial basis function, and artificial neural network are used as classifier. The results are considered in two step validation methods as general k-fold cross-validation and patient based cross-validation. As a result, it is shown that using neural network classifier with features obtained from SODP, the constructed system could distinguish normal and CHF patients with 100% accuracy rate. KeywordsComment: Congestive heart failure, ECG, Second-Order Difference Plot, classification, patient based cross-validatio
    • …
    corecore