157 research outputs found

    The Problem of Adhesion Methods and Locomotion Mechanism Development for Wall-Climbing Robots

    Full text link
    This review considers a problem in the development of mobile robot adhesion methods with vertical surfaces and the appropriate locomotion mechanism design. The evolution of adhesion methods for wall-climbing robots (based on friction, magnetic forces, air pressure, electrostatic adhesion, molecular forces, rheological properties of fluids and their combinations) and their locomotion principles (wheeled, tracked, walking, sliding framed and hybrid) is studied. Wall-climbing robots are classified according to the applications, adhesion methods and locomotion mechanisms. The advantages and disadvantages of various adhesion methods and locomotion mechanisms are analyzed in terms of mobility, noiselessness, autonomy and energy efficiency. Focus is placed on the physical and technical aspects of the adhesion methods and the possibility of combining adhesion and locomotion methods

    Reconfigurable multi-legs robot for pipe inspection: Design and gait movement

    Get PDF
    1132-1144This paper focuses on studies on reconfigurable multi-legs robotic system. The aim of this paper is to identify and acquire findings on how multi-legs robot can walk, climb vertical pipe and walk along the horizontal pipe after climbing. Three degrees of freedom (3DOF) multi-legs robot is designed and built to replace human involvement either at hazardous pipeline or to check on vertical and horizontal pipes. The robot system is tested to climb the vertical pipe and then move along horizontal pipe for inspection or other purposes. This can reduce the cost and percentage of human risk exposure during inspection on outer pipe. This multi-legs robot has more movement gaits compared to wheeled robot, but in terms of speed, wheeled robot possesses greater advantages. Therefore, this system design has combination of both wheel and multiple legs ensure that the to system has higher stability, more gait movement, and higher speed manoeuvrability. The gaits analysis for the system movement includes angle of the legs to move and selection of certain legs to perform a given operation, either walking, climbing or hanging. The target result is the system able to climb 500 mm height with 85 mm radius pipe. The potential applications for the system are: (i) to move along either on surface or underwater pipe and (ii) to be equipped with ultrasonic sensor to inspect the pipe.</em

    Climbing Robot for Steel Bridge Inspection: Design Challenges

    Full text link
    Inspection of bridges often requires high risk operations such as working at heights, in confined spaces, in hazardous environments; or sites inaccessible by humans. There is significant motivation for robotic solutions which can carry out these inspection tasks. When inspection robots are deployed in real world inspection scenarios, it is inevitable that unforeseen challenges will be encountered. Since 2011, the New South Wales Roads & Maritime Services and the Centre of Excellence for Autonomous Systems at the University of Technology, Sydney, have been working together to develop an innovative climbing robot to inspect high risk locations on the Sydney Harbour Bridge. Many engineering challenges have been faced throughout the development of several prototype climbing robots, and through field trials in the archways of the Sydney Harbour Bridge. This paper will highlight some of the key challenges faced in designing a climbing robot for inspection, and then present an inchworm inspired robot which addresses many of these challenges

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    A climbing autonomous robot for inspection application in 3D complex environment

    Get PDF
    Often inspection and maintenance work involve a large number of highly dangerous manual operations, especially within industrial fields such as shipbuilding and construction. This paper deals with the autonomous climbing robot which uses the “caterpillar” concept to climb in complex 3D metallic-based structures. During its motion the robot generates in real-time the path and grasp planning in order to ensure stable self-support to avoid the environment obstacles, and to optimise the robot consumption during the inspection. The control and monitoring of the robot is achieved through an advanced Graphical User Interface to allow an effective and user friendly operation of the robot. The experiments confirm its advantages in executing the inspection operations.This work has been partially funded by the Spanish government agency CICYT under project TAP95-0088. The authors would like to acknowledge the technical support of A. Jardón, E. Jiménez, C. Palazuelos, J.A. Campo and F. Manera and also the company of APTECA for its help in the mechanical development.Publicad

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Novel Locomotion Methods in Magnetic Actuation and Pipe Inspection

    Get PDF
    There is much room for improvement in tube network inspections of jet aircraft. Often, these inspections are incomplete and inconsistent. In this paper, we develop a Modular Robotic Inspection System (MoRIS) for jet aircraft tube networks and a corresponding kinematic model. MoRIS consists of a Base Station for user control and communication, and robotic Vertebrae for accessing and inspecting the network. The presented and tested design of MoRIS can travel up to 9 feet in a tube network. The Vertebrae can navigate in all orientations, including smooth vertical tubes. The design is optimized for nominal 1.5 outside diameter tubes. We developed a model of the Locomotion Vertebra in a tube. We defined the model\u27s coordinate system and its generalized coordinates. We studied the configuration space of the robot, which includes all possible orientations of the Locomotion Vertebra. We derived the expression for the elastic potential energy of the Vertebra\u27s suspensions and minimized it to find the natural settling orientation of the robot. We further explore the effect of the tractive wheel\u27s velocity constraint on locomotion dynamics. Finally, we develop a general model for aircraft tube networks and for a taut tether. Stabilizing bipedal walkers is a engineering target throughout the research community. In this paper, we develop an impulsively actuated walking robot. Through the use of magnetic actuation, for the first time, pure impulsive actuation has been achieved in bipedal walkers. In studying this locomotion technique, we built the world\u27s smallest walker: Big Foot. A dynamical model was developed for Big Foot. A Heel Strike and a Constant Pulse Wave Actuation Schemes were selected for testing. The schemes were validated through simulations and experiments. We showed that there exists two regimes for impulsive actuation. There is a regime for impact-like actuation and a regime for longer duration impulsive actuation
    corecore