1,458 research outputs found

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    An Efficiency-Focused Design of Direct-DC Loads in Buildings

    Get PDF
    Despite the recent interest in direct current (DC) power distribution in buildings, the market for DC-ready loads remains small. The existing DC loads in various products or research test beds are not always designed to efficiently leverage the benefits of DC. This work addresses a pressing need for a study into the development of efficient DC loads. In particular, it focuses on documenting and demonstrating how to best leverage a DC input to eliminate or improve conversion stages in a load’s power converter. This work identifies how typical building loads can benefit from DC input, including bath fans, refrigerators, task lights, and zone lighting. It then details the development of several prototypes that demonstrate efficiency savings with DC. The most efficient direct-DC loads are explicitly designed for DC from the ground up, rather than from an AC modification

    Control of AC/DC microgrids with renewables in the context of smart grids including ancillary services and electric mobility

    Get PDF
    Microgrids are a very good solution for current problems raised by the constant growth of load demand and high penetration of renewable energy sources, that results in grid modernization through “Smart-Grids” concept. The impact of distributed energy sources based on power electronics is an important concern for power systems, where natural frequency regulation for the system is hindered because of inertia reduction. In this context, Direct Current (DC) grids are considered a relevant solution, since the DC nature of power electronic devices bring technological and economical advantages compared to Alternative Current (AC). The thesis proposes the design and control of a hybrid AC/DC Microgrid to integrate different renewable sources, including solar power and braking energy recovery from trains, to energy storage systems as batteries and supercapacitors and to loads like electric vehicles or another grids (either AC or DC), for reliable operation and stability. The stabilization of the Microgrid buses’ voltages and the provision of ancillary services is assured by the proposed control strategy, where a rigorous stability study is made. A low-level distributed nonlinear controller, based on “System-of-Systems” approach is developed for proper operation of the whole Microgrid. A supercapacitor is applied to deal with transients, balancing the DC bus of the Microgrid and absorbing the energy injected by intermittent and possibly strong energy sources as energy recovery from the braking of trains and subways, while the battery realizes the power flow in long term. Dynamical feedback control based on singular perturbation analysis is developed for supercapacitor and train. A Lyapunov function is built considering the interconnected devices of the Microgrid to ensure the stability of the whole system. Simulations highlight the performance of the proposed control with parametric robustness tests and a comparison with traditional linear controller. The Virtual Synchronous Machine (VSM) approach is implemented in the Microgrid for power sharing and frequency stability improvement. An adaptive virtual inertia is proposed, then the inertia constant becomes a system’s state variable that can be designed to improve frequency stability and inertial support, where stability analysis is carried out. Therefore, the VSM is the link between DC and AC side of the Microgrid, regarding the available power in DC grid, applied for ancillary services in the AC Microgrid. Simulation results show the effectiveness of the proposed adaptive inertia, where a comparison with droop and standard control techniques is conducted.As Microrredes são uma ótima solução para os problemas atuais gerados pelo constante crescimento da demanda de carga e alta penetração de fontes de energia renováveis, que resulta na modernização da rede através do conceito “Smart-Grids”. O impacto das fontes de energia distribuídas baseados em eletrônica de potência é uma preocupação importante para o sistemas de potência, onde a regulação natural da frequência do sistema é prejudicada devido à redução da inércia. Nesse contexto, as redes de corrente contínua (CC) são consideradas um progresso, já que a natureza CC dos dispositivos eletrônicos traz vantagens tecnológicas e econômicas em comparação com a corrente alternada (CA). A tese propõe o controle de uma Microrrede híbrida CA/CC para integrar diferentes fontes renováveis, incluindo geração solar e frenagem regenerativa de trens, sistemas de armazenamento de energia como baterias e supercapacitores e cargas como veículos elétricos ou outras (CA ou CC) para confiabilidade da operação e estabilidade. A regulação das tensões dos barramentos da Microrrede e a prestação de serviços anciliares são garantidas pela estratégia de controle proposta, onde é realizado um rigoroso estudo de estabilidade. Um controlador não linear distribuído de baixo nível, baseado na abordagem “System-of-Systems”, é desenvolvido para a operação adequada de toda a rede elétrica. Um supercapacitor é aplicado para lidar com os transitórios, equilibrando o barramento CC da Microrrede, absorvendo a energia injetada por fontes de energia intermitentes e possivelmente fortes como recuperação de energia da frenagem de trens e metrôs, enquanto a bateria realiza o fluxo de potência a longo prazo. O controle por dynamical feedback baseado numa análise de singular perturbation é desenvolvido para o supercapacitor e o trem. Funções de Lyapunov são construídas considerando os dispositivos interconectados da Microrrede para garantir a estabilidade de todo o sistema. As simulações destacam o desempenho do controle proposto com testes de robustez paramétricos e uma comparação com o controlador linear tradicional. O esquema de máquina síncrona virtual (VSM) é implementado na Microrrede para compartilhamento de potência e melhoria da estabilidade de frequência. Então é proposto o uso de inércia virtual adaptativa, no qual a constante de inércia se torna variável de estado do sistema, projetada para melhorar a estabilidade da frequência e prover suporte inercial. Portanto, o VSM realiza a conexão entre lado CC e CA da Microrrede, onde a energia disponível na rede CC é usada para prestar serviços anciliares no lado CA da Microrrede. Os resultados da simulação mostram a eficácia da inércia adaptativa proposta, sendo realizada uma comparação entre o controle droop e outras técnicas de controle convencionais

    Dual-Active-Bridge Model and Control for Supporting Fast Synthetic Inertial Action

    Get PDF
    This article proposes a dual-active-bridge control to support the fast synthetic inertial action in DC microgrids. First of all, the selection of the isolated DC/DC converter to link an energy storage system with the DC bus in a microgrid is analyzed and the advantages of the dual-active-bridge converter controlled by a single-phase shift modulation justify its selection. An active front-end can be then adapted to connect the DC bus with an AC grid. Secondly, this paper presents the design of a discrete PI controller for supporting fast synthetic inertial action. In particular, a discrete dual-active-bridge model based on the transferred power between both converter bridges, which overcomes the approximations of the output current linearization model, is proposed. Moreover, the article introduces a novel equation set to directly and dynamically tune discrete PI parameters to fulfill the design frequency specifications based on the inversion formulae method. In this way, during the voltage/power transients on the DC bus, the controller actively responds and recovers those transients within a grid fundamental cycle. Since the developed set of control equations is very simple, it can be easily implemented by a discrete control algorithm, avoiding the use of offline trial and error procedures which may lead to system instability under large load variations. Finally, the proposed control system is evaluated and validated in PLECS simulations and hardware-in-the-loop tests

    Seamless Transition of a Microgrid Between Grid-Connected and Islanded Mode

    Get PDF
    This thesis focuses on improving the behavior of inverters during transition periods from islanded mode to grid-connected mode (GC) and vice-versa. A systematic approach is presented to add smart features to inverters to enhance their capability to cope with sudden changes in the power system. The importance of microgrids lies in their ability to provide a stable and reliable source of power for critical loads in the presence of faults. For this purpose, a design is proposed consisting of a distributed energy resource (DER), battery energy storage system (BESS) and a load connected through a bypass switch with the main utility distribution substation. The BESS is connected to the AC distribution feeder through a smart inverter that is controlled in both modes of operations. The system was tested using MATLAB/Simulink models and the results show proof of the seamless transition between the two modes of operation. The cost of building the software system was unnoticeable due to the availability of a MATLAB license but the real cost of the hardware needed to build the system will be moderate though the importance will be significant
    corecore