91 research outputs found

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Saving energy in aggressive intrusion detection through dynamic latency sensitivity recognition

    Get PDF
    In an always connected world, cyber-attacks and computer security breaches can produce significant financial damages as well as introduce new risks and menaces in everyday's life. As a consequence, more and more sophisticated packet screening/filtering solutions are deployed everywhere, typically on network border devices, in order to sanitize Internet traffic. Despite the obvious benefits associated to the proactive detection of security threats, these devices, by performing deep packet inspection and inline analysis, may both affect latency-sensitive traffic introducing non-negligible delays, and increase the energy demand at the network element level. Starting from these considerations, we present a selective routing and intrusion detection technique based on dynamic statistical analysis. Our technique separates latency-sensitive traffic from latency-insensitive one and adaptively organizes the intrusion detection activities over multiple nodes. This allows suppressing directly at the network ingress, when possible, all the undesired components of latency-insensitive traffic and distributing on the innermost nodes the security check for latency sensitive flows, prioritizing routing activities over security scanning ones. Our final goal is demonstrating that selective intrusion detection can result in significant energy savings without adversely affecting latency-sensitive traffic by introducing unacceptable processing delays. \ua9 2017 Elsevier Ltd

    Traffic Optimization in Data Center and Software-Defined Programmable Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A study of the applicability of software-defined networking in industrial networks

    Get PDF
    173 p.Las redes industriales interconectan sensores y actuadores para llevar a cabo funciones de monitorización, control y protección en diferentes entornos, tales como sistemas de transporte o sistemas de automatización industrial. Estos sistemas ciberfísicos generalmente están soportados por múltiples redes de datos, ya sean cableadas o inalámbricas, a las cuales demandan nuevas prestaciones, de forma que el control y gestión de tales redes deben estar acoplados a las condiciones del propio sistema industrial. De este modo, aparecen requisitos relacionados con la flexibilidad, mantenibilidad y adaptabilidad, al mismo tiempo que las restricciones de calidad de servicio no se vean afectadas. Sin embargo, las estrategias de control de red tradicionales generalmente no se adaptan eficientemente a entornos cada vez más dinámicos y heterogéneos.Tras definir un conjunto de requerimientos de red y analizar las limitaciones de las soluciones actuales, se deduce que un control provisto independientemente de los propios dispositivos de red añadiría flexibilidad a dichas redes. Por consiguiente, la presente tesis explora la aplicabilidad de las redes definidas por software (Software-Defined Networking, SDN) en sistemas de automatización industrial. Para llevar a cabo este enfoque, se ha tomado como caso de estudio las redes de automatización basadas en el estándar IEC 61850, el cual es ampliamente usado en el diseño de las redes de comunicaciones en sistemas de distribución de energía, tales como las subestaciones eléctricas. El estándar IEC 61850 define diferentes servicios y protocolos con altos requisitos en terminos de latencia y disponibilidad de la red, los cuales han de ser satisfechos mediante técnicas de ingeniería de tráfico. Como resultado, aprovechando la flexibilidad y programabilidad ofrecidas por las redes definidas por software, en esta tesis se propone una arquitectura de control basada en el protocolo OpenFlow que, incluyendo tecnologías de gestión y monitorización de red, permite establecer políticas de tráfico acorde a su prioridad y al estado de la red.Además, las subestaciones eléctricas son un ejemplo representativo de infraestructura crítica, que son aquellas en las que un fallo puede resultar en graves pérdidas económicas, daños físicos y materiales. De esta forma, tales sistemas deben ser extremadamente seguros y robustos, por lo que es conveniente la implementación de topologías redundantes que ofrezcan un tiempo de reacción ante fallos mínimo. Con tal objetivo, el estándar IEC 62439-3 define los protocolos Parallel Redundancy Protocol (PRP) y High-availability Seamless Redundancy (HSR), los cuales garantizan un tiempo de recuperación nulo en caso de fallo mediante la redundancia activa de datos en redes Ethernet. Sin embargo, la gestión de redes basadas en PRP y HSR es estática e inflexible, lo que, añadido a la reducción de ancho de banda debida la duplicación de datos, hace difícil un control eficiente de los recursos disponibles. En dicho sentido, esta tesis propone control de la redundancia basado en el paradigma SDN para un aprovechamiento eficiente de topologías malladas, al mismo tiempo que se garantiza la disponibilidad de las aplicaciones de control y monitorización. En particular, se discute cómo el protocolo OpenFlow permite a un controlador externo configurar múltiples caminos redundantes entre dispositivos con varias interfaces de red, así como en entornos inalámbricos. De esta forma, los servicios críticos pueden protegerse en situaciones de interferencia y movilidad.La evaluación de la idoneidad de las soluciones propuestas ha sido llevada a cabo, principalmente, mediante la emulación de diferentes topologías y tipos de tráfico. Igualmente, se ha estudiado analítica y experimentalmente cómo afecta a la latencia el poder reducir el número de saltos en las comunicaciones con respecto al uso de un árbol de expansión, así como balancear la carga en una red de nivel 2. Además, se ha realizado un análisis de la mejora de la eficiencia en el uso de los recursos de red y la robustez alcanzada con la combinación de los protocolos PRP y HSR con un control llevado a cabo mediante OpenFlow. Estos resultados muestran que el modelo SDN podría mejorar significativamente las prestaciones de una red industrial de misión crítica

    Scalable QoS routing in MPLS networks using mobile code

    Get PDF
    In a continually evolving Internet, tools such as Q u a lity o f Service ro u tin g must be used in order to accommodate user demands. However, deploying and developing QoS routing in the legacy Internet is difficult. Multiprotocol Label Switching (MPLS) facilitates the deployment of QoS routing, due to its separation of functions between the control and forwarding plane. Developing QoS routing raises scalability issues within very large networks. I propose overcoming these issues by using topology aggregation and distributed routing based on modem techniques such as active networks and mobile agents. However, topology aggregation introduces inaccuracy, which has a negative impact on QoS routing performance. To avoid such problems I propose a hierarchical routing protocol, called Macro-routing, which by using distributed route computation is able to process more detailed information and thus to use the most accurate aggregation technique, i.e. Full-Mesh. Therefore, the protocol is more likely to find the best path between source and destination, and can also find more than one available path. QoS routing, which is used for finding feasible paths that simultaneously satisfy multiple constraints, is also called multiple-constrained routing and is an NP-complete problem. The difficulty of solving such problems increases in a hierarchical context, where aggregation techniques influence the path computation process. I propose a new aggregation technique which allows the selection of multiple paths that satisfy multiple QoS constraints. This reduces the probability of a false negative, i.e., of the routing algorithm incorrectly reporting that no path satisfying the constraints exists. This aggregation technique is called extended full-mesh (EFM) and is intended for use with the Macro-routing protocol. Deploying these protocols in the Internet will allow multi-constrained routing to be practically implemented on large networks
    corecore