381 research outputs found

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    On the Significance of Distance in Machine Learning

    Get PDF
    Avstandsbegrepet er grunnleggende i maskinlæring. Hvordan vi velger å måle avstand har betydning, men det er ofte utfordrende å finne et passende avstandsmål. Metrisk læring kan brukes til å lære funksjoner som implementerer avstand eller avstandslignende mål. Vanlige dyplæringsmodeller er sårbare for modifikasjoner av input som har til hensikt å lure modellen (adversarial examples, motstridende eksempler). Konstruksjon av modeller som er robuste mot denne typen angrep er av stor betydning for å kunne utnytte maskinlæringsmodeller i større skala, og et passende avstandsmål kan brukes til å studere slik motstandsdyktighet. Ofte eksisterer det hierarkiske relasjoner blant klasser, og disse relasjonene kan da representeres av den hierarkiske avstanden til klasser. I klassifiseringsproblemer som må ta i betraktning disse klasserelasjonene, kan hierarkiinformert klassifisering brukes. Jeg har utviklet en metode kalt /distance-ratio/-basert (DR) metrisk læring. I motsetning til den formuleringen som normalt anvendes har DR-formuleringen to gunstige egenskaper. For det første er det skala-invariant med hensyn til rommet det projiseres til. For det andre har optimale klassekonfidensverdier på klasserepresentantene. Dersom rommet for å konstruere modifikasjoner er tilstrekklig stort, vil man med standard adversarial accuracy (SAA, standard motstridende nøyaktighet) risikere at naturlige datapunkter blir betraktet som motstridende eksempler. Dette kan være en årsak til SAA ofte går på bekostning av nøyaktighet. For å løse dette problemet har jeg utviklet en ny definisjon på motstridende nøyaktighet kalt Voronoi-epsilon adversarial accuracy (VAA, Voronoi-epsilon motstridende nøyaktighet). VAA utvider studiet av lokal robusthet til global robusthet. Klassehierarkisk informasjon er ikke tilgjengelig for alle datasett. For å håndtere denne utfordringen har jeg undersøkt om klassifikasjonsbaserte metriske læringsmodeller kan brukes til å utlede klassehierarkiet. Videre har jeg undersøkt de mulige effektene av robusthet på feature space (egenskapsrom). Jeg fant da at avstandsstrukturen til et egenskapsrom trent for robusthet har større likhet med avstandsstrukturen i rådata enn et egenskapsrom trent uten robusthet.The notion of distance is fundamental in machine learning. The choice of distance matters, but it is often challenging to find an appropriate distance. Metric learning can be used for learning distance(-like) functions. Common deep learning models are vulnerable to the adversarial modification of inputs. Devising adversarially robust models is of immense importance for the wide deployment of machine learning models, and distance can be used for the study of adversarial robustness. Often, hierarchical relationships exist among classes, and these relationships can be represented by the hierarchical distance of classes. For classification problems that must take these class relationships into account, hierarchy-informed classification can be used. I propose distance-ratio-based (DR) formulation for metric learning. In contrast to the commonly used formulation, DR formulation has two favorable properties. First, it is invariant of the scale of an embedding. Secondly, it has optimal class confidence values on class representatives. For a large perturbation budget, standard adversarial accuracy (SAA) allows natural data points to be considered as adversarial examples. This could be a reason for the tradeoff between accuracy and SAA. To resolve the issue, I proposed a new definition of adversarial accuracy named Voronoi-epsilon adversarial accuracy (VAA). VAA extends the study of local robustness to global robustness. Class hierarchical information is not available for all datasets. To handle this challenge, I investigated whether classification-based metric learning models can be used to infer class hierarchy. Furthermore, I explored the possible effects of adversarial robustness on feature space. I found that the distance structure of robustly trained feature space resembles that of input space to a greater extent than does standard trained feature space.Doktorgradsavhandlin

    A Review of the Role of Causality in Developing Trustworthy AI Systems

    Full text link
    State-of-the-art AI models largely lack an understanding of the cause-effect relationship that governs human understanding of the real world. Consequently, these models do not generalize to unseen data, often produce unfair results, and are difficult to interpret. This has led to efforts to improve the trustworthiness aspects of AI models. Recently, causal modeling and inference methods have emerged as powerful tools. This review aims to provide the reader with an overview of causal methods that have been developed to improve the trustworthiness of AI models. We hope that our contribution will motivate future research on causality-based solutions for trustworthy AI.Comment: 55 pages, 8 figures. Under revie

    Deep Generative Modelling of Human Behaviour

    Get PDF
    Human action is naturally intelligible as a time-varying graph of connected joints constrained by locomotor anatomy and physiology. Its prediction allows the anticipation of actions with applications across healthcare, physical rehabilitation and training, robotics, navigation, manufacture, entertainment, and security. In this thesis we investigate deep generative approaches to the problem of understanding human action. We show that the learning of generative qualities of the distribution may render discriminative tasks more robust to distributional shift and real-world variations in data quality. We further build, from the bottom-up, a novel stochastically deep generative modelling model taylored to the problem of human motion and demonstrate many of it’s state-of-the-art properties such as anomaly detection, imputation in the face of incomplete examples, as well as synthesis—and conditional synthesis—of new samples on massive open source human motion datasets compared to multiple baselines derived from the most relevant pieces of literature

    Deep Neural Networks and Tabular Data: Inference, Generation, and Explainability

    Get PDF
    Over the last decade, deep neural networks have enabled remarkable technological advancements, potentially transforming a wide range of aspects of our lives in the future. It is becoming increasingly common for deep-learning models to be used in a variety of situations in the modern life, ranging from search and recommendations to financial and healthcare solutions, and the number of applications utilizing deep neural networks is still on the rise. However, a lot of recent research efforts in deep learning have focused primarily on neural networks and domains in which they excel. This includes computer vision, audio processing, and natural language processing. It is a general tendency for data in these areas to be homogeneous, whereas heterogeneous tabular datasets have received relatively scant attention despite the fact that they are extremely prevalent. In fact, more than half of the datasets on the Google dataset platform are structured and can be represented in a tabular form. The first aim of this study is to provide a thoughtful and comprehensive analysis of deep neural networks' application to modeling and generating tabular data. Apart from that, an open-source performance benchmark on tabular data is presented, where we thoroughly compare over twenty machine and deep learning models on heterogeneous tabular datasets. The second contribution relates to synthetic tabular data generation. Inspired by their success in other homogeneous data modalities, deep generative models such as variational autoencoders and generative adversarial networks are also commonly applied for tabular data generation. However, the use of Transformer-based large language models (which are also generative) for tabular data generation have been received scant research attention. Our contribution to this literature consists of the development of a novel method for generating tabular data based on this family of autoregressive generative models that, on multiple challenging benchmarks, outperformed the current state-of-the-art methods for tabular data generation. Another crucial aspect for a deep-learning data system is that it needs to be reliable and trustworthy to gain broader acceptance in practice, especially in life-critical fields. One of the possible ways to bring trust into a data-driven system is to use explainable machine-learning methods. In spite of this, the current explanation methods often fail to provide robust explanations due to their high sensitivity to the hyperparameter selection or even changes of the random seed. Furthermore, most of these methods are based on feature-wise importance, ignoring the crucial relationship between variables in a sample. The third aim of this work is to address both of these issues by offering more robust and stable explanations, as well as taking into account the relationships between variables using a graph structure. In summary, this thesis made a significant contribution that touched many areas related to deep neural networks and heterogeneous tabular data as well as the usage of explainable machine learning methods

    Geometry-Aware Latent Representation Learning for Modeling Disease Progression of Barrett's Esophagus

    Full text link
    Barrett's Esophagus (BE) is the only precursor known to Esophageal Adenocarcinoma (EAC), a type of esophageal cancer with poor prognosis upon diagnosis. Therefore, diagnosing BE is crucial in preventing and treating esophageal cancer. While supervised machine learning supports BE diagnosis, high interobserver variability in histopathological training data limits these methods. Unsupervised representation learning via Variational Autoencoders (VAEs) shows promise, as they map input data to a lower-dimensional manifold with only useful features, characterizing BE progression for improved downstream tasks and insights. However, the VAE's Euclidean latent space distorts point relationships, hindering disease progression modeling. Geometric VAEs provide additional geometric structure to the latent space, with RHVAE assuming a Riemannian manifold and S\mathcal{S}-VAE a hyperspherical manifold. Our study shows that S\mathcal{S}-VAE outperforms vanilla VAE with better reconstruction losses, representation classification accuracies, and higher-quality generated images and interpolations in lower-dimensional settings. By disentangling rotation information from the latent space, we improve results further using a group-based architecture. Additionally, we take initial steps towards S\mathcal{S}-AE, a novel autoencoder model generating qualitative images without a variational framework, but retaining benefits of autoencoders such as stability and reconstruction quality

    Breaking the Curse of Dimensionality in Deep Neural Networks by Learning Invariant Representations

    Full text link
    Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language processing and computer vision, largely attributed to deep learning, a special class of machine learning models. Deep learning arguably surpasses traditional approaches by learning the relevant features from raw data through a series of computational layers. This thesis explores the theoretical foundations of deep learning by studying the relationship between the architecture of these models and the inherent structures found within the data they process. In particular, we ask What drives the efficacy of deep learning algorithms and allows them to beat the so-called curse of dimensionality-i.e. the difficulty of generally learning functions in high dimensions due to the exponentially increasing need for data points with increased dimensionality? Is it their ability to learn relevant representations of the data by exploiting their structure? How do different architectures exploit different data structures? In order to address these questions, we push forward the idea that the structure of the data can be effectively characterized by its invariances-i.e. aspects that are irrelevant for the task at hand. Our methodology takes an empirical approach to deep learning, combining experimental studies with physics-inspired toy models. These simplified models allow us to investigate and interpret the complex behaviors we observe in deep learning systems, offering insights into their inner workings, with the far-reaching goal of bridging the gap between theory and practice.Comment: PhD Thesis @ EPF

    Understanding the role of sensor optimisation in complex systems

    Get PDF
    Complex systems involve monitoring, assessing, and predicting the health of various systems within an integrated vehicle health management (IVHM) system or a larger system. Health management applications rely on sensors that generate useful information about the health condition of the assets; thus, optimising the sensor network quality while considering specific constraints is the first step in assessing the condition of assets. The optimisation problem in sensor networks involves considering trade-offs between different performance metrics. This review paper provides a comprehensive guideline for practitioners in the field of sensor optimisation for complex systems. It introduces versatile multi-perspective cost functions for different aspects of sensor optimisation, including selection, placement, data processing and operation. A taxonomy and concept map of the field are defined as valuable navigation tools in this vast field. Optimisation techniques and quantification approaches of the cost functions are discussed, emphasising their adaptability to tailor to specific application requirements. As a pioneering contribution, all the relevant literature is gathered and classified here to further improve the understanding of optimal sensor networks from an information-gain perspective
    corecore