377 research outputs found

    Coding Solutions for the Secure Biometric Storage Problem

    Full text link
    The paper studies the problem of securely storing biometric passwords, such as fingerprints and irises. With the help of coding theory Juels and Wattenberg derived in 1999 a scheme where similar input strings will be accepted as the same biometric. In the same time nothing could be learned from the stored data. They called their scheme a "fuzzy commitment scheme". In this paper we will revisit the solution of Juels and Wattenberg and we will provide answers to two important questions: What type of error-correcting codes should be used and what happens if biometric templates are not uniformly distributed, i.e. the biometric data come with redundancy. Answering the first question will lead us to the search for low-rate large-minimum distance error-correcting codes which come with efficient decoding algorithms up to the designed distance. In order to answer the second question we relate the rate required with a quantity connected to the "entropy" of the string, trying to estimate a sort of "capacity", if we want to see a flavor of the converse of Shannon's noisy coding theorem. Finally we deal with side-problems arising in a practical implementation and we propose a possible solution to the main one that seems to have so far prevented real life applications of the fuzzy scheme, as far as we know.Comment: the final version appeared in Proceedings Information Theory Workshop (ITW) 2010, IEEE copyrigh

    Hand-based multimodal identification system with secure biometric template storage

    Get PDF
    WOS:000304107200001This study proposes a biometric system for personal identification based on three biometric characteristics from the hand, namely: the palmprint, finger surfaces and hand geometry. A protection scheme is applied to the biometric template data to guarantee its revocability, security and diversity among different biometric systems. An error-correcting code (ECC), a cryptographic hash function (CHF) and a binarisation module are the core of the template protection scheme. Since the ECC and CHF operate on binary data, an additional feature binarisation step is required. This study proposes: (i) a novel identification architecture that uses hand geometry as a soft biometric to accelerate the identification process and ensure the system's scalability; and (ii) a new feature binarisation technique that guarantees that the Hamming distance between transformed binary features is proportional to the difference between their real values. The proposed system achieves promising recognition and speed performances on two publicly available hand image databases.info:eu-repo/semantics/acceptedVersio

    Improved fuzzy hashing technique for biometric template protection

    Get PDF
    Biometrics provides a new dimension of security to modern automated applications since each user will need to prove his identity when attempting an access. However, if a stored biometric template is compromised, then the conventional biometric recognition system becomes vulnerable to privacy invasion. This invasion is a permanent one because the biometric template is not replaceable. In this paper, we introduce an improved FuzzyHashing technique for biometric template protection purpose. We demonstrate our implementation in the context of fingerprint biometrics. The experimental results and the security analysis on FVC 2004 DB1 and DB2 fingerprint datasets suggest that the technique is highly feasible in practice
    corecore