27 research outputs found

    A scalable algorithm to explore the Gibbs energy landscape of genome-scale metabolic networks

    Get PDF
    The integration of various types of genomic data into predictive models of biological networks is one of the main challenges currently faced by computational biology. Constraint-based models in particular play a key role in the attempt to obtain a quantitative understanding of cellular metabolism at genome scale. In essence, their goal is to frame the metabolic capabilities of an organism based on minimal assumptions that describe the steady states of the underlying reaction network via suitable stoichiometric constraints, specifically mass balance and energy balance (i.e. thermodynamic feasibility). The implementation of these requirements to generate viable configurations of reaction fluxes and/or to test given flux profiles for thermodynamic feasibility can however prove to be computationally intensive. We propose here a fast and scalable stoichiometry-based method to explore the Gibbs energy landscape of a biochemical network at steady state. The method is applied to the problem of reconstructing the Gibbs energy landscape underlying metabolic activity in the human red blood cell, and to that of identifying and removing thermodynamically infeasible reaction cycles in the Escherichia coli metabolic network (iAF1260). In the former case, we produce consistent predictions for chemical potentials (or log-concentrations) of intracellular metabolites; in the latter, we identify a restricted set of loops (23 in total) in the periplasmic and cytoplasmic core as the origin of thermodynamic infeasibility in a large sample (10610^6) of flux configurations generated randomly and compatibly with the prior information available on reaction reversibility.Comment: 11 pages, 6 figures, 1 table; for associated supporting material see http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.100256

    Quantitative constraint-based computational model of tumor-to-stroma coupling via lactate shuttle

    Get PDF
    Cancer cells utilize large amounts of ATP to sustain growth, relying primarily on non-oxidative, fermentative pathways for its production. In many types of cancers this leads, even in the presence of oxygen, to the secretion of carbon equivalents (usually in the form of lactate) in the cell’s surroundings, a feature known as the Warburg effect. While the molecular basis of this phenomenon are still to be elucidated, it is clear that the spilling of energy resources contributes to creating a peculiar microenvironment for tumors, possibly characterized by a degree of toxicity. This suggests that mechanisms for recycling the fermentation products (e.g. a lactate shuttle) may be active, effectively inducing a mutually beneficial metabolic coupling between aberrant and non-aberrant cells. Here we analyze this scenario through a large-scale in silico metabolic model of interacting human cells. By going beyond the cell-autonomous description, we show that elementary physico- chemical constraints indeed favor the establishment of such a coupling under very broad conditions. The characterization we obtained by tuning the aberrant cell’s demand for ATP, amino-acids and fatty acids and/or the imbalance in nutrient partitioning provides quantitative support to the idea that synergistic multi-cell effects play a central role in cancer sustainmen

    Filling Kinetic Gaps: Dynamic Modeling of Metabolism Where Detailed Kinetic Information Is Lacking

    Get PDF
    Integrative analysis between dynamical modeling of metabolic networks and data obtained from high throughput technology represents a worthy effort toward a holistic understanding of the link among phenotype and dynamical response. Even though the theoretical foundation for modeling metabolic network has been extensively treated elsewhere, the lack of kinetic information has limited the analysis in most of the cases. To overcome this constraint, we present and illustrate a new statistical approach that has two purposes: integrate high throughput data and survey the general dynamical mechanisms emerging for a slightly perturbed metabolic network.This paper presents a statistic framework capable to study how and how fast the metabolites participating in a perturbed metabolic network reach a steady-state. Instead of requiring accurate kinetic information, this approach uses high throughput metabolome technology to define a feasible kinetic library, which constitutes the base for identifying, statistical and dynamical properties during the relaxation. For the sake of illustration we have applied this approach to the human Red blood cell metabolism (hRBC) and its capacity to predict temporal phenomena was evaluated. Remarkable, the main dynamical properties obtained from a detailed kinetic model in hRBC were recovered by our statistical approach. Furthermore, robust properties in time scale and metabolite organization were identify and one concluded that they are a consequence of the combined performance of redundancies and variability in metabolite participation.In this work we present an approach that integrates high throughput metabolome data to define the dynamic behavior of a slightly perturbed metabolic network where kinetic information is lacking. Having information of metabolite concentrations at steady-state, this method has significant relevance due its potential scope to analyze others genome scale metabolic reconstructions. Thus, I expect this approach will significantly contribute to explore the relationship between dynamic and physiology in other metabolic reconstructions, particularly those whose kinetic information is practically nulls. For instances, I envisage that this approach can be useful in genomic medicine or pharmacogenomics, where the estimation of time scales and the identification of metabolite organization may be crucial to characterize and identify (dis)functional stages

    Predicting metabolic biomarkers of human inborn errors of metabolism

    Get PDF
    Early diagnosis of inborn errors of metabolism is commonly performed through biofluid metabolomics, which detects specific metabolic biomarkers whose concentration is altered due to genomic mutations. The identification of new biomarkers is of major importance to biomedical research and is usually performed through data mining of metabolomic data. After the recent publication of the genome-scale network model of human metabolism, we present a novel computational approach for systematically predicting metabolic biomarkers in stochiometric metabolic models. Applying the method to predict biomarkers for disruptions of red-blood cell metabolism demonstrates a marked correlation with altered metabolic concentrations inferred through kinetic model simulations. Applying the method to the genome-scale human model reveals a set of 233 metabolites whose concentration is predicted to be either elevated or reduced as a result of 176 possible dysfunctional enzymes. The method's predictions are shown to significantly correlate with known disease biomarkers and to predict many novel potential biomarkers. Using this method to prioritize metabolite measurement experiments to identify new biomarkers can provide an order of a 10-fold increase in biomarker detection performance

    An analytic approximation of the feasible space of metabolic networks

    Full text link
    Assuming a steady-state condition within a cell, metabolic fluxes satisfy an under-determined linear system of stoichiometric equations. Characterizing the space of fluxes that satisfy such equations along with given bounds (and possibly additional relevant constraints) is considered of utmost importance for the understanding of cellular metabolism. Extreme values for each individual flux can be computed with Linear Programming (as Flux Balance Analysis), and their marginal distributions can be approximately computed with Monte-Carlo sampling. Here we present an approximate analytic method for the latter task based on Expectation Propagation equations that does not involve sampling and can achieve much better predictions than other existing analytic methods. The method is iterative, and its computation time is dominated by one matrix inversion per iteration. With respect to sampling, we show through extensive simulation that it has some advantages including computation time, and the ability to efficiently fix empirically estimated distributions of fluxes

    Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective

    Get PDF
    Background: The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. Results: We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. Conclusions: These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange. © 2013 Massucci et al.; licensee BioMed Central Ltd

    The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks

    Get PDF
    The dynamic behavior of metabolic networks is governed by numerous regulatory mechanisms, such as reversible phosphorylation, binding of allosteric effectors or temporal gene expression, by which the activity of the participating enzymes can be adjusted to the functional requirements of the cell. For most of the cellular enzymes, such regulatory mechanisms are at best qualitatively known, whereas detailed enzyme-kinetic models are lacking. To explore the possible dynamic behavior of metabolic networks in cases of lacking or incomplete enzyme-kinetic information, we present a computational approach based on structural kinetic modeling. We derive statistical measures for the relative impact of enzyme-kinetic parameters on dynamic properties (such as local stability) and apply our approach to the metabolism of human erythrocytes. Our findings show that allosteric enzyme regulation significantly enhances the stability of the network and extends its potential dynamic behavior. Moreover, our approach allows to differentiate quantitatively between metabolic states related to senescence and metabolic collapse of the human erythrocyte. We think that the proposed method represents an important intermediate step on the long way from topological network analysis to detailed kinetic modeling of complex metabolic networks

    A community-driven global reconstruction of human metabolism

    Get PDF
    Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/
    corecore