1,644 research outputs found

    Interference Channels with Destination Cooperation

    Full text link
    Interference is a fundamental feature of the wireless channel. To better understand the role of cooperation in interference management, the two-user Gaussian interference channel where the destination nodes can cooperate by virtue of being able to both transmit and receive is studied. The sum-capacity of this channel is characterized up to a constant number of bits. The coding scheme employed builds up on the superposition scheme of Han and Kobayashi (1981) for two-user interference channels without cooperation. New upperbounds to the sum-capacity are also derived.Comment: revised based on reviewers' comment

    Relays for Interference Mitigation in Wireless Networks

    Get PDF
    Wireless links play an important role in the last mile network connectivity. In contrast to the strictly centralized approach of today's wireless systems, the future promises decentralization of network management. Nodes potentially engage in localized grouping and organization based on their neighborhood to carry out complex goals such as end-to-end communication. The quadratic energy dissipation of the wireless medium necessitates the presence of certain relay nodes in the network. Conventionally, the role of such relays is limited to passing messages in a chain in a point-point hopping architecture. With the decentralization, multiple nodes could potentially interfere with each other. This work proposes a technique to exploit the presence of relays in a way that mitigates interference between the network nodes. Optimal spatial locations and transmission schemes which enhance this gain are identified

    On the Outage Probability of the Full-Duplex Interference-Limited Relay Channel

    Get PDF
    In this paper, we study the performance, in terms of the asymptotic error probability, of a user which communicates with a destination with the aid of a full-duplex in-band relay. We consider that the network is interference-limited, and interfering users are distributed as a Poisson point process. In this case, the asymptotic error probability is upper bounded by the outage probability (OP). We investigate the outage behavior for well-known cooperative schemes, namely, decode-and-forward (DF) and compress-and-forward (CF) considering fading and path loss. For DF we determine the exact OP and develop upper bounds which are tight in typical operating conditions. Also, we find the correlation coefficient between source and relay signals which minimizes the OP when the density of interferers is small. For CF, the achievable rates are determined by the spatial correlation of the interferences, and a straightforward analysis isn't possible. To handle this issue, we show the rate with correlated noises is at most one bit worse than with uncorrelated noises, and thus find an upper bound on the performance of CF. These results are useful to evaluate the performance and to optimize relaying schemes in the context of full-duplex wireless networks.Comment: 30 pages, 4 figures. Final version. To appear in IEEE JSAC Special Issue on Full-duplex Wireless Communications and Networks, 201

    On Joint Source-Channel Coding for Correlated Sources Over Multiple-Access Relay Channels

    Get PDF
    We study the transmission of correlated sources over discrete memoryless (DM) multiple-access-relay channels (MARCs), in which both the relay and the destination have access to side information arbitrarily correlated with the sources. As the optimal transmission scheme is an open problem, in this work we propose a new joint source-channel coding scheme based on a novel combination of the correlation preserving mapping (CPM) technique with Slepian-Wolf (SW) source coding, and obtain the corresponding sufficient conditions. The proposed coding scheme is based on the decode-and-forward strategy, and utilizes CPM for encoding information simultaneously to the relay and the destination, whereas the cooperation information from the relay is encoded via SW source coding. It is shown that there are cases in which the new scheme strictly outperforms the schemes available in the literature. This is the first instance of a source-channel code that uses CPM for encoding information to two different nodes (relay and destination). In addition to sufficient conditions, we present three different sets of single-letter necessary conditions for reliable transmission of correlated sources over DM MARCs. The newly derived conditions are shown to be at least as tight as the previously known necessary conditions.Comment: Accepted to TI

    Relaying for Multiuser Networks in the Absence of Codebook Information

    Full text link
    This work considers relay assisted transmission for multiuser networks when the relay has no access to the codebooks used by the transmitters. The relay is called oblivious for this reason. Of particular interest is the generalized compress-and-forward (GCF) strategy, where the destinations jointly decode the compression indices and the transmitted messages, and their optimality in this setting. The relay-to-destination links are assumed to be out-of-band with finite capacity. Two models are investigated: the multiple access relay channel (MARC) and the interference relay channel (IFRC). For the MARC with an oblivious relay, a new outerbound is derived and it is shown to be tight by means of achievability of the capacity region using GCF scheme. For the IFRC with an oblivious relay, a new strong interference condition is established, under which the capacity region is found by deriving a new outerbound and showing that it is achievable using GCF scheme. The result is further extended to establish the capacity region of M-user MARC with an oblivious relay, and multicast networks containing M sources and K destinations with an oblivious relay.Comment: submitted to IEEE Transactions on Information Theor

    Degrees of Freedom of Two-Hop Wireless Networks: "Everyone Gets the Entire Cake"

    Full text link
    We show that fully connected two-hop wireless networks with K sources, K relays and K destinations have K degrees of freedom both in the case of time-varying channel coefficients and in the case of constant channel coefficients (in which case the result holds for almost all values of constant channel coefficients). Our main contribution is a new achievability scheme which we call Aligned Network Diagonalization. This scheme allows the data streams transmitted by the sources to undergo a diagonal linear transformation from the sources to the destinations, thus being received free of interference by their intended destination. In addition, we extend our scheme to multi-hop networks with fully connected hops, and multi-hop networks with MIMO nodes, for which the degrees of freedom are also fully characterized.Comment: Presented at the 2012 Allerton Conference. Submitted to IEEE Transactions on Information Theor
    • …
    corecore