4,687 research outputs found

    REPP-H: runtime estimation of power and performance on heterogeneous data centers

    Get PDF
    Modern data centers increasingly demand improved performance with minimal power consumption. Managing the power and performance requirements of the applications is challenging because these data centers, incidentally or intentionally, have to deal with server architecture heterogeneity [19], [22]. One critical challenge that data centers have to face is how to manage system power and performance given the different application behavior across multiple different architectures.This work has been supported by the EU FP7 program (Mont-Blanc 2, ICT-610402), by the Ministerio de Economia (CAP-VII, TIN2015-65316-P), and the Generalitat de Catalunya (MPEXPAR, 2014-SGR-1051). The material herein is based in part upon work supported by the US NSF, grant numbers ACI-1535232 and CNS-1305220.Peer ReviewedPostprint (author's final draft

    The Glasgow raspberry pi cloud: a scale model for cloud computing infrastructures

    Get PDF
    Data Centers (DC) used to support Cloud services often consist of tens of thousands of networked machines under a single roof. The significant capital outlay required to replicate such infrastructures constitutes a major obstacle to practical implementation and evaluation of research in this domain. Currently, most research into Cloud computing relies on either limited software simulation, or the use of a testbed environments with a handful of machines. The recent introduction of the Raspberry Pi, a low-cost, low-power single-board computer, has made the construction of a miniature Cloud DCs more affordable. In this paper, we present the Glasgow Raspberry Pi Cloud (PiCloud), a scale model of a DC composed of clusters of Raspberry Pi devices. The PiCloud emulates every layer of a Cloud stack, ranging from resource virtualisation to network behaviour, providing a full-featured Cloud Computing research and educational environment

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Measuring the capacity of a streaming media server in a Utility Data Center environment

    Get PDF

    Emulation of Industrial Control Field Device Protocols

    Get PDF
    It has been shown that thousands of industrial control devices are exposed to the Internet, however, the extent and nature of attacks on such devices remains unknown. The first step to understanding security problems that face modern supervisory control and data acquisition (SCADA) and industrial controls networks is to understand the various attacks launched on Internet-connected field devices. This thesis describes the design and implementation of an industrial control emulator on a Gumstix single-board computer as a solution. This emulator acts as a decoy field device, or honeypot, intended to be probed and attacked via an Internet connection. Evaluation techniques are developed to assess the accuracy of the emulation implemented on the Gumstix and are compared against the implementation on a standard PC and the emulation target, a Koyo DirectLogic 405 programmable logic controller. The results show that both the Gumstix and PC emulator platforms are very accurate to the workloads presented. This suggests that a honeypot implemented on a Gumstix emulator and a standard PC are both suitable for applications in SCADA attack-landscape research
    • …
    corecore