231,725 research outputs found

    Grayscale-image encryption using Random Hill Cipher over SLn(F) associated with Discrete Wavelet Transformation

    Get PDF
    Image data are highly sensitive and prone to incidental decoding by intruders. The security of image data in an insecure network is therefore a major issue. In this paper, we have presented a novel approach for grayscale-image encryption and decryption using Random Hill cipher over SLn(F) associated with discrete wavelet transformation. Earlier techniques for encryption and decryption of image data discussed missing the keys, but in this approach, both the keys and the arrangement of RHC are emphasized. Additionally, keys multiplication side (pre or post) over a grayscale-image data matrix also inevitable to know, to correctly decrypt the encrypted image data. In proposed approach, consider keys from special linear group over field F. The key space of the whole cryptosystem is exorbitant. We have presented a computer simulation with a standard examples and the results is given to analyze the robustness of the proposed technique. Security analysis and detailed comparison among earlier developed techniques with proposed approach are also discussed for the robustness of the technique

    Hybrid DWT-DCT algorithm for image and video compression applications

    Get PDF
    Digital image and video in their raw form require an enormous amount of storage capacity. Considering the important role played by digital imaging and video, it is necessary to develop a system that produces high degree of compression while preserving critical image/video information. There are various transformation techniques used for data compression. Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are the most commonly used transformation. DCT has high energy compaction property and requires less computational resources. On the other hand, DWT is multiresolution transformation. In this work, we propose a hybrid DWT-DCT algorithm for image compression and reconstruction taking benefit from the advantages of both algorithms. The algorithm performs the Discrete Cosine Transform (DCT) on the Discrete Wavelet Transform (DWT) coefficients. Simulations have been conducted on several natural, benchmark, medical and endoscopic images. Several QCIF, high definition, and endoscopic videos have also been used to demonstrate the advantage of the proposed scheme. The simulation results show that the proposed hybrid DWT-DCT algorithm performs much better than the standalone JPEG-based DCT, DWT, and WHT algorithms in terms of peak signal to noise ratio (PSNR), as well as visual perception at higher compression ratio. The new scheme reduces “false contouring” and “blocking artifacts” significantly. The rate distortion analysis shows that for a fixed level of distortion, the number of bits required to transmit the hybrid coefficients would be less than those required for other schemes Furthermore, the proposed algorithm is also compared with the some existing hybrid algorithms. The comparison results show that, the proposed hybrid algorithm has better performance and reconstruction quality. The proposed scheme is intended to be used as the image/video compressor engine in imaging and video applications

    Discrete Cosine Transform and Singular Value Decomposition Based on Canny Edge Detection for Image Watermarking

    Get PDF
    The development of an increasingly sophisticated internet allows for the distribution of digital images that can be done easily. However, with the development of increasingly sophisticated internet networks, it becomes an opportunity for some irresponsible people to misuse digital images, such as taking copyrights, modification and duplicating digital images. Watermarking is an information embedding technique to show ownership descriptions that can be conveyed into text, video, audio, and digital images. There are 2 groups of watermarking based on their working domain, namely the spatial domain and the transformation domain. In this study, three domain transformation techniques were used, namely Singular Value Descomposition (SVD), Discrete Cosine Transform (DCT) and Canny Edge Detection Techniques. The proposed attacks are rotation, gaussian blurness, salt and pepper, histogram equalization, and cropping. The results of the experiment after inserting the watermark image were measured by the Peak Signal to Noise Ratio (PSNR). The results of the image robustness test were measured by the Correlation Coefficient (Corr) and Normalized Correlation (NC). The analysis and experimental results show that the results of image extraction are good with PSNR values from watermarked images above 50dB and Corr values reaching 0.95. The NC value obtained is also high, reaching 0.98. Some of the extracted images are of fairly good quality and are similar with the original image

    COMPARISON OF DIFFERENT FUSION ALGORITHMS IN URBAN AND AGRICULTURAL AREAS USING SAR (PALSAR AND RADARSAT) AND OPTICAL (SPOT) IMAGES

    Get PDF
    Image fusion techniques of remote sensing data are formal frameworks for merging and using images originating from different sources. This research investigates the quality assessment of Synthetic Aperture Radar (SAR) data fusion with optical imagery. Two different SAR data from different sensors namely RADARSAT-1 and PALSAR were fused with SPOT-2 data. Both SAR data have the same resolutionsand polarisations; however images were gathered in different frequencies as C band and L band respectively. This paper contributes to the comparative evaluation of fused data for understanding the performance of implemented image fusionalgorithms such as Ehlers, IHS (Intensity-Hue-Saturation), HPF (High Pass Frequency), two dimensional DWT (Discrete Wavelet Transformation), and PCA (Principal Component Analysis) techniques. Quality assessments of fused imageswere performed both qualitatively and quantitatively. For the statistical analysis; bias, correlation coefficient (CC), difference in variance (DIV), standard deviation difference (SDD), universal image quality index (UIQI) methods were applied on the fused images. The evaluations were performed by categorizing the test area into two as “urban” and “agricultural”. It has been observed that some of the methodshave enhanced either the spatial quality or preserved spectral quality of the original SPOT XS image to various degrees while some approaches have introduced distortions. In general we noted that Ehlers’ spectral quality is far better than those of the other methods. HPF performs almost best in agricultural areas for both SAR images

    GaAs Implementation of FIR Filter

    Get PDF
    This thesis discusses the findings of the final year project involving Gallium Arsenide implementation of a triangular FIR filter to perform discrete wavelet transforms. The overall characteristics of Gallium Arsenide technology- its construction, behaviour and electrical charactersitics as they apply to VLSI technology - were investigated in this project. In depth understanding of its architecture is required to be able to understand the various design techniques employed. A comparison of Silicon and GaAs performance and other characteristics has also been made to fully justify the choice of this material for system implementation. A lot of research and active interest has gone into the field of image and video compression. Wavelet-based image transformation is one of the very efficient compression techniques used. An analysis of discrete wavelet transformations and the required triangular FIR filter was done to be able to produce a transform algorithm and the related filter architecture. Finally, the filter architecture was implemented as a VLSI design and layout. A variety of functional blocks required for the architecture were designed, tested and analysed. All these blocks were integrated to produce a model of a complete filter cell. The filter implementation was designed to be self-timed - without a system clock. Self-timed systems have considerable advantages over clocked architectures. Various design styles and handshaking mechanisms involved in designing a self-timed system were analysed and designed. There are many avenues still to explore. One of them is the VHDL analysis of filter architecture. Further development on this project would involve integration of higher-level logic and formation of a complete filter array

    Work design improvement at Miroad Rubber Industries Sdn. Bhd.

    Get PDF
    Erul Food Industries known as Salaiport Industry is a family-owned company and was established on July 2017. Salaiport Industry apparently moved to a new place at Pedas, Negeri Sembilan. Previously, Salaiport Industry operated in-house located at Pagoh, Johor. This small company major business is producing frozen smoked beef, smoked quail, smoke catfish and smoked duck. The main frozen product is smoked beef. The frozen smoked meat produced by Salaiport Industry is depending on customer demands. Usually the company produce 40 kg to 60 kg a day and operated between for four days until five days. Therefore, the company produce approximately around 80 kg to 120 kg per week. The company usually take 2 days for 1 complete cycle for the production as the first day the company will only receive the meat from the supplier and freeze the meat for use of tomorrow
    • …
    corecore