135 research outputs found

    High Speed Low Area DA Based FIR Filter Using EGDI Adder

    Get PDF
    In this paper, we proposed a novel enhanced gate diffusion (EGDI) adder is designed and is implemented in Distributed Arithmetic (DA) based Finite Impulse Response (FIR) filter.  Generally, multipliers, adders, and shift accumulators are the basic blocks present in the FIR filters. The hardware architecture of multipliers is very high. To get rid of this multiplier less architecture is needed in the FIR filter. So Distributed Arithmetic architecture plays a key role in FIR filters which will occupy less area and increase the speed. To reduce the area further the adders in DA are designed using enhanced gate diffusion (EGDI) which increases the operation speed of the FIR filter and at the same time, the area will be decreased. The proposed design is synthesized and implemented in the Synapsis design compiler tool. The area, power delay product, frequency, area delay product, and power of the proposed design are calculated.  When we observe the proposed design has a 15% high-frequency rate when compared with the existing design. Also, the proposed design is more useful in signal, processing applications

    High Speed Low Area DA Based FIR Filter Using EGDI Adder

    Get PDF
    In this paper, we proposed a novel enhanced gate diffusion (EGDI) adder is designed and is implemented in Distributed Arithmetic (DA) based Finite Impulse Response (FIR) filter.  Generally, multipliers, adders, and shift accumulators are the basic blocks present in the FIR filters. The hardware architecture of multipliers is very high. To get rid of this multiplier less architecture is needed in the FIR filter. So Distributed Arithmetic architecture plays a key role in FIR filters which will occupy less area and increase the speed. To reduce the area further the adders in DA are designed using enhanced gate diffusion (EGDI) which increases the operation speed of the FIR filter and at the same time, the area will be decreased. The proposed design is synthesized and implemented in the Synapsis design compiler tool. The area, power delay product, frequency, area delay product, and power of the proposed design are calculated.  When we observe the proposed design has a 15% high-frequency rate when compared with the existing design. Also, the proposed design is more useful in signal, processing applications

    Design and Analysis of Multiplexer based Approximate Adder for Low Power Applications

    Get PDF
    Low power consumption is crucial for error-acceptable multimedia devices, with picture compression approaches leveraging various digital processing architectures and algorithms. Humans can assemble useful information from partially inaccurate outputs in many multimedia applications. As a result, producing exact outputs is not required. The demand for an exact outcome is fading because new innovative systems are forgiving of faults. In the domain where error-tolerance is accepted, approximate computing is a new paradigm that relaxes the requirement for an accurate modeling while offering power, time, and delay benefits. Adders are an essential arithmetic module for regulating power and memory usage in digital systems. The recent implementation and use of approximate adders have been supported by trade-off characteristics such as delay, lower power consumption. This study examines the delay and power consumption of conventional and approximate adders. Also, a simple, fast, and power-efficient multiplexer-based approximate adder is proposed, and its performance outperforms the adders compared with existing adders. The proposed adder can be utilized in error-tolerant and various digital signal processing applications where exact results are not required. The proposed and existing adders are designed using EDA software for the performance calculations. With a delay of 81 pS, the proposed adder circuit reduces power consumption compared to the exact one. The experiment shows that the designed approximate adder can be used to implement circuits for image processing systems because it has a smaller delay and uses less energy

    Optical Access Engine Setup and Validation

    Get PDF
    The optical access engine integrated with the diagnostic and optical measurement techniques is a great platform for engine research because it provides clear visual access to the combustion chamber inside the engines. An optical access engine customized based on a 4-cylinder spark ignited direct injection (SIDI) production engine is located in the Advanced Power Systems Laboratories (APS LABS) at Michigan Technological University. This optical access engine inside the test cell has been set up for different engine research. In this report, two SAE papers in engine research utilizing the optical access engine are reviewed to gain basic understanding of the methodology. Though the optical engine in APS LABS is a little bit different from the engines used in the literature, the methodology in the papers provides guidelines for engine research through optical access engines. In addition, the optical access engine instrumentation including the test cell setup and the optical engine setup is described in detail in the report providing a solid record for later troubleshooting and reference. Finally, the motoring tests, firing tests and optical imaging experiment on the optical engine have been performed to validate the instrumentation. This report only describes so far the instrumentation of the optical engine in the APS LABS by April 2015

    Ultra Low Power Digital Circuit Design for Wireless Sensor Network Applications

    Get PDF
    Ny forskning innenfor feltet trĂ„dlĂžse sensornettverk Ă„pner for nye og innovative produkter og lĂžsninger. Biomedisinske anvendelser er blant omrĂ„dene med stĂžrst potensial og det investeres i dag betydelige belĂžp for Ă„ bruke denne teknologien for Ă„ gjĂžre medisinsk diagnostikk mer effektiv samtidig som man Ă„pner for fjerndiagnostikk basert pĂ„ trĂ„dlĂžse sensornoder integrert i et ”helsenett”. MĂ„let er Ă„ forbedre tjenestekvalitet og redusere kostnader samtidig som brukerne skal oppleve forbedret livskvalitet som fĂžlge av Ăžkt trygghet og mulighet for Ă„ tilbringe mest mulig tid i eget hjem og unngĂ„ unĂždvendige sykehusbesĂžk og innleggelser. For Ă„ gjĂžre dette til en realitet er man avhengige av sensorelektronikk som bruker minst mulig energi slik at man oppnĂ„r tilstrekkelig batterilevetid selv med veldig smĂ„ batterier. I sin avhandling ” Ultra Low power Digital Circuit Design for Wireless Sensor Network Applications” har PhD-kandidat Farshad Moradi fokusert pĂ„ nye lĂžsninger innenfor konstruksjon av energigjerrig digital kretselektronikk. Avhandlingen presenterer nye lĂžsninger bĂ„de innenfor aritmetiske og kombinatoriske kretser, samtidig som den studerer nye statiske minneelementer (SRAM) og alternative minnearkitekturer. Den ser ogsĂ„ pĂ„ utfordringene som oppstĂ„r nĂ„r silisiumteknologien nedskaleres i takt med mikroprosessorutviklingen og foreslĂ„r lĂžsninger som bidrar til Ă„ gjĂžre kretslĂžsninger mer robuste og skalerbare i forhold til denne utviklingen. De viktigste konklusjonene av arbeidet er at man ved Ă„ introdusere nye konstruksjonsteknikker bĂ„de er i stand til Ă„ redusere energiforbruket samtidig som robusthet og teknologiskalerbarhet Ăžker. Forskningen har vĂŠrt utfĂžrt i samarbeid med Purdue University og vĂŠrt finansiert av Norges ForskningsrĂ„d gjennom FRINATprosjektet ”Micropower Sensor Interface in Nanometer CMOS Technology”

    A COMPARITIVE ANALYSIS OF MULTIPLIERS USING GDI TECHNIQUE

    Get PDF
    A bountiful of adders has been designed over the years in order to simplify the multiplication with various improvements. A comparison of Complementary Pass Transistor Logic and Shanno

    Implementation of a 4-bit Ripple Carry Full Adder of Mirror Design Style Using Synopsys Generic 90nm Technology on a Full-Custom and Semi-Custom Design

    Get PDF
    The most frequently used component in the datapath block and the speed-limiting element is the adder. Because of this, it is essential to optimize the adder knowing it has a big impact on the overall system performance. In addition to that, adders are a very important subsystem in digital designs, thus, taking care about its performance must be spotted. By manipulating the transistor sizes and circuit topology, the speed can be optimized. A circuit of a CMOS (Complementary metal oxide semiconductor) 4-bit RCA (Ripple Carry Adder) is presented. The proposed adder cell refers to the CMOS adder class executed on CMOS mirror design style that has a smaller area and delay compared with the static adder implementation of the full adder. By simply cascading full-adder blocks, one obtains a Ripple-Carry Adder which perhaps the simplest to implement than that of the other carry adders. Creating the full adder in schematic diagram is a part of Pre-simulation. It incorporates the construction of CMOS transistors and connected through the use of wires. Widths and lengths of the transistors are the crucial parts in designing to place and route connections easily. Layout diagram is the equivalent of the schematic diagram but more on a detailed part and it should be the same as the transistor based circuit. With the aid of the verification processes such as DRC (Design Rule Check) and LVS (Layout versus Schematic), it can give an assurance that both the schematic and layout diagrams are similar and functioning properly

    Enhancing a Neurosurgical Imaging System with a PC-based Video Processing Solution

    Get PDF
    This work presents a PC-based prototype video processing application developed to be used with a specific neurosurgical imaging device, the OPMIÂź PenteroTM operating microscope, in the Department of Neurosurgery of Helsinki University Central Hospital at Töölö, Helsinki. The motivation for implementing the software was the lack of some clinically important features in the imaging system provided by the microscope. The imaging system is used as an online diagnostic aid during surgery. The microscope has two internal video cameras; one for regular white light imaging and one for near-infrared fluorescence imaging, used for indocyanine green videoangiography. The footage of the microscope’s current imaging mode is accessed via the composite auxiliary output of the device. The microscope also has an external high resolution white light video camera, accessed via a composite output of a separate video hub. The PC was chosen as the video processing platform for its unparalleled combination of prototyping and high-throughput video processing capabilities. A thorough analysis of the platform and efficient video processing methods was conducted in the thesis and the results were used in the design of the imaging station. The features found feasible during the project were incorporated into a video processing application running on a GNU/Linux distribution Ubuntu. The clinical usefulness of the implemented features was ensured beforehand by consulting the neurosurgeons using the original system. The most significant shortcomings of the original imaging system were mended in this work. The key features of the developed application include: live streaming, simultaneous streaming and recording, and playing back of upto two video streams. The playback mode provides full media player controls, with a frame-by-frame precision rewinding, in an intuitive and responsive interface. A single view and a side-by-side comparison mode are provided for the streams. The former gives more detail, while the latter can be used, for example, for before-after and anatomic-angiographic comparisons.fi=OpinnĂ€ytetyö kokotekstinĂ€ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LĂ€rdomsprov tillgĂ€ngligt som fulltext i PDF-format
    • 

    corecore