307 research outputs found

    Infectious Diseases: Lessons Learned from Ebola and Zika

    No full text

    Key opportunities and challenges for the use of big data in migration research and policy

    Get PDF
    Migration is one of the defining issues of the 21st century. Better data is required to improve understanding about how and why people are moving, target interventions and support evidence-based migration policy. Big data, defined as large, complex data from diverse sources, has been proposed as a solution to help address current gaps in knowledge. The authors participated in a workshop held in London, UK, in July 2019, that brought together experts from the UN, humanitarian NGOs, policy and academia to develop a better understanding of how big data could be used for migration research and policy. We identified six key areas regarding the application of big data in migration research and policy: accessing and utilising data; integrating data sources and knowledge; understanding environmental drivers of migration; improving healthcare access for migrant populations; ethical and security concerns; and addressing political narratives. We advocate the need for increased cross-disciplinary collaborations to advance the use of big data in migration research whilst safeguarding vulnerable migrant communities

    A Multi-Stage Machine Learning Approach to Predict Dengue Incidence: A Case Study in Mexico

    Get PDF
    © 2013 IEEE. The mosquito-borne dengue fever is a major public health problem in tropical countries, where it is strongly conditioned by climate factors such as temperature. In this paper, we formulate a holistic machine learning strategy to analyze the temporal dynamics of temperature and dengue data and use this knowledge to produce accurate predictions of dengue, based on temperature on an annual scale. The temporal dynamics are extracted from historical data by utilizing a novel multi-stage combination of auto-encoding, window-based data representation and trend-based temporal clustering. The prediction is performed with a trend association-based nearest neighbour predictor. The effectiveness of the proposed strategy is evaluated in a case study that comprises the number of dengue and dengue hemorrhagic fever cases collected over the period 1985-2010 in 32 federal states of Mexico. The empirical study proves the viability of the proposed strategy and confirms that it outperforms various state-of-the-art competitor methods formulated both in regression and in time series forecasting analysis
    corecore