554 research outputs found

    Investigation of deep level defects in copper irradiated bipolar junction transistor

    Get PDF
    Commercial bipolar junction transistor (2N 2219A, npn) irradiated with 150 MeV Cu11+-ions with fluence of the order 1012 ions cm-2, is studied for radiation induced gain degradation and deep level defects. I-V measurements are made to study the gain degradation as a function of ion fluence. The properties such as activation energy, trap concentration and capture cross-section of deep levels are studied by deep level transient spectroscopy (DLTS). Minority carrier trap levels with energies ranging from EC - 0.164 eV to EC - 0.695 eV are observed in the base-collector junction of the transistor. Majority carrier trap levels are also observed with energies ranging from EV + 0.203 eV to EV + 0.526 eV. The irradiated transistor is subjected to isothermal and isochronal annealing. The defects are seen to anneal above 350 °C. The defects generated in the base region of the transistor by displacement damage appear to be responsible for transistor gain degradation. © 2008 Elsevier Ltd. All rights reserved

    DLTS study of deep level defects in Li-ion irradiated bipolar junction transistor

    Get PDF
    Commercial npn transistor (2N 2219A) irradiated with 50 MeV Li3+-ions with fluences ranging from 3.1 × 1013 ions cm−2 to 12.5 × 1013 ions cm−2, is studied for radiation induced gain degradation and minority carrier trap levels or recombination centers. The properties such as activation energy, trap concentration and capture cross section of induced deep levels are studied by deep level transient spectroscopy (DLTS) technique. Minority carrier trap levels with energies ranging from 0.237 eV to 0.591 eV were observed in the base–collector junction of the transistor. In situ I–V measurements were made to study the gain degradation as a function of ion fluence. Ion induced energy levels result in increase in the base current through Shockley Read Hall (SRH) or multi-phonon recombination and subsequent transistor gain degradation

    Radiation Effects on Wide Band Gap Semiconductor Transport Properties

    Get PDF
    In this research, the transport properties of ZnO were studied through the use of electron and neutron beam irradiation. Acceptor states are known to form deep in the bandgap of doped ZnO material. By subjecting doped ZnO materials to electron and neutron beams we are able to probe, identify and modify transport characteristics relating to these deep accepter states. The impact of irradiation and temperature on minority carrier diffusion length and lifetime were monitored through the use of the Electron Beam Induced Current (EBIC) method and Cathodoluminescence (CL) spectroscopy. The minority carrier diffusion length, L, was shown to increase as it was subjected to increasing temperature as well as continuous electron irradiation. The near-band-edge (NBE) intensity in CL measurements was found to decay as a function of temperature and electron irradiation due to an increase in carrier lifetime. Electron injection through application of a forward bias also resulted in a similar increase of minority carrier diffusion length. Thermal and electron irradiation dependences were used to determine activation energies for the irradiation induced effects. This helps to further our understanding of the electron injection mechanism as well as to identify possible defects responsible for the observed effects. Thermal activation energies likely represent carrier delocalization energy and are related to the increase of diffusion length due to the reduction in recombination efficiency. The effect of electron irradiation on the minority carrier diffusion length and lifetime can be attributed to the trapping of non-equilibrium electrons on neutral acceptor levels. The effect of neutron irradiation on CL intensity can be attributed to an increase in shallow donor concentration. Thermal activation energies resulting from an increase in L or decay of CL intensity monitored through EBIC and CL measurements for p-type Sb doped ZnO were found to be the range of Ea = 112 to 145 meV. P-type Sb doped ZnO nanowires under the influence of temperature and electron injection either through continuous beam impacting or through forward bias, displayed an increase in L and corresponding decay of CL intensity when observed by EBIC or CL measurements. These measurements led to activation energies for the effect ranging from Ea = 217 to 233 meV. These values indicate the possible involvement of a SbZn-2VZn acceptor complex. For N-type unintentionally doped ZnO, CL measurements under the influence of temperature and electron irradiation by continuous beam impacting led to a decrease in CL intensity which resulted in an electron irradiation activation energy of approximately Ea = 259 meV. This value came close to the defect energy level of the zinc interstitial. CL measurements of neutron irradiated ZnO nanostructures revealed that intensity is redistributed in favor of the NBE transition indicating an increase of shallow donor concentration. With annealing contributing to the improvement of crystallinity, a decrease can be seen in the CL intensity due to the increase in majority carrier lifetime. Low energy emission seen from CL spectra can be due to oxygen vacancies and as an indicator of radiation defects

    Neutron, gamma ray, and temperature effects on the electrical characteristics of thyristors

    Get PDF
    Experimental data showing the effects of neutrons, gamma rays, and temperature on the electrical and switching characteristics of phase-control and inverter-type SCR's are presented. The special test fixture built for mounting, heating, and instrumenting the test devices is described. Four SCR's were neutron irradiated at 300 K and four at 365 K for fluences up to 3.2 x 10 exp 13 n/sq. cm, and eight were gamma irradiated at 300 K only for gamma doses up to 5.1 Mrads. The electrical measurements were made during irradiation and the switching measurements were made only before and after irradiation. Radiation induced crystal defects, resulting primarily from fast neutrons, caused the reduction of minority carrier lifetime through the generation of R-G centers. The reduction in lifetime caused increases in the on-state voltage drop and in the reverse and forward leakage currents, and decreases in the turn-off time

    Investigating Time and Spectral Dependence in Neutron Radiation Environments for Semiconductor Damage Studies

    Get PDF
    As legacy neutron irradiation facilities are shut down due to security and financial constrictions, a growing need arises for alternatives that can provide the same or similar radiation environments using methods and/or fuels that do not pose the same risks. For this reason, facilities that provide much lower neutron fluxes and different spectral shapes are being leveraged over longer irradiation intervals to meet this need. However, the question arises as to whether the use of these types of facilities provide a valid comparison to the legacy systems\u27 results. To this end, a model using a system of coupled, non-linear ordinary differential equations has been developed to track defect species in silicon for short pulse neutron irradiations. This model has been used to predict current gain degradation in silicon BJTs for various neutron influences. These predictions have been compared against experimental data collected at two neutron irradiation facilities with different time and spectral profiles. The damage constant during irradiation has been determined, and it is different for both facilities. However, the time profile is found to have no effect in the region tested in this work. Now that this analysis has been done, these types of facilities can be used for radiation vulnerability analysis studies for use in short pulse neutron damage studies

    NEW MATERIAL FOR ELIMINATING LINEAR ENERGY TRANSFER SENSITIVITIES IN DEEPLY SCALED CMOS TECHNOLOGIES SRAM CELLS

    Get PDF
    As technology scales deep in submicron regime, CMOS SRAM memories have become increasingly sensitive to Single-Event Upset sensitivity. Key technological factors that impact Single-Event Upset sensitivity are gate length, gate and drain areas and the power supply voltage all of which impact transistor's nodal capacitance. In this work, I present engineering requirement studies, which show for the first time, the tread of Single-Event Upset sensitivity in deeply scaled SRAM cells. To mitigate the Single-Event Upset sensitivity, a novel approach is presented, illustrating exactly how material defects can be managed in a way that sets electrical resistance of the material as desired. A thin-film high-resistance value ranging from 2kΩ/-3.6MΩ/, and TCR of negative 0.0016%/˚C is presented. A defect model is presented that agrees well with the experimental results. These resistors are used in the cross-coupled latches; to decouple the latch nodes and delay the regenerative action of the cell, thus hardening against single even upset (SEU)
    • …
    corecore