1,601 research outputs found

    Lyapunov design of a simple step-size adaptation strategy based on success

    Get PDF
    A simple success-based step-size adaptation rule for singleparent Evolution Strategies is formulated, and the setting of the corresponding parameters is considered. Theoretical convergence on the class of strictly unimodal functions of one variable that are symmetric around the optimum is investigated using a stochastic Lyapunov function method developed by Semenov and Terkel [5] in the context of martingale theory. General expressions for the conditional expectations of the next values of step size and distance to the optimum under (1 +, λ)-selection are analytically derived, and an appropriate Lyapunov function is constructed. Convergence rate upper bounds, as well as adaptation parameter values, are obtained through numerical optimization for increasing values of λ. By selecting the number of offspring that minimizes the bound on the convergence rate with respect to the number of function evaluations, all strategy parameter values result from the analysis

    Convergence of the Continuous Time Trajectories of Isotropic Evolution Strategies on Monotonic C^2-composite Functions

    Get PDF
    The Information-Geometric Optimization (IGO) has been introduced as a unified framework for stochastic search algorithms. Given a parametrized family of probability distributions on the search space, the IGO turns an arbitrary optimization problem on the search space into an optimization problem on the parameter space of the probability distribution family and defines a natural gradient ascent on this space. From the natural gradients defined over the entire parameter space we obtain continuous time trajectories which are the solutions of an ordinary differential equation (ODE). Via discretization, the IGO naturally defines an iterated gradient ascent algorithm. Depending on the chosen distribution family, the IGO recovers several known algorithms such as the pure rank-\mu update CMA-ES. Consequently, the continuous time IGO-trajectory can be viewed as an idealization of the original algorithm. In this paper we study the continuous time trajectories of the IGO given the family of isotropic Gaussian distributions. These trajectories are a deterministic continuous time model of the underlying evolution strategy in the limit for population size to infinity and change rates to zero. On functions that are the composite of a monotone and a convex-quadratic function, we prove the global convergence of the solution of the ODE towards the global optimum. We extend this result to composites of monotone and twice continuously differentiable functions and prove local convergence towards local optima.Comment: PPSN - 12th International Conference on Parallel Problem Solving from Nature - 2012 (2012

    Markov Chain Analysis of Evolution Strategies on a Linear Constraint Optimization Problem

    Get PDF
    This paper analyses a (1,λ)(1,\lambda)-Evolution Strategy, a randomised comparison-based adaptive search algorithm, on a simple constraint optimisation problem. The algorithm uses resampling to handle the constraint and optimizes a linear function with a linear constraint. Two cases are investigated: first the case where the step-size is constant, and second the case where the step-size is adapted using path length control. We exhibit for each case a Markov chain whose stability analysis would allow us to deduce the divergence of the algorithm depending on its internal parameters. We show divergence at a constant rate when the step-size is constant. We sketch that with step-size adaptation geometric divergence takes place. Our results complement previous studies where stability was assumed.Comment: Amir Hussain; Zhigang Zeng; Nian Zhang. IEEE Congress on Evolutionary Computation, Jul 2014, Beijing, Chin

    進化的及び樹状突起のメカニズムを考慮したソフトコンピューティング技術の提案

    Get PDF
    富山大学・富理工博甲第117号・宋振宇・2017/03/23富山大学201

    A logistic map approach to economic cycles I. The best adapted companies

    Full text link
    A birth-death lattice gas model about the influence of an environment on the fitness and concentration evolution of economic entities is analytically examined. The model can be mapped onto a high order logistic map. The control parameter is a (scalar) "business plan". Conditions are searched for growth and decay processes, stable states, upper and lower bounds, bifurcations, periodic and chaotic solutions. The evolution equation of the economic population for the best fitted companies indicates "microscopic conditions" for cycling. The evolution of a dynamic exponent is shown as a function of the business plan parameters.Comment: 10 pages, 5 postscript figure
    corecore