185 research outputs found

    Soft handover issues in radio resource management for 3G WCDMA networks

    Get PDF
    PhDMobile terminals allow users to access services while on the move. This unique feature has driven the rapid growth in the mobile network industry, changing it from a new technology into a massive industry within less than two decades. Handover is the essential functionality for dealing with the mobility of the mobile users. Compared with the conventional hard handover employed in the GSM mobile networks, the soft handover used in IS-95 and being proposed for 3G has better performance on both link and system level. Previous work on soft handover has led to several algorithms being proposed and extensive research has been conducted on the performance analysis and parameters optimisation of these algorithms. Most of the previous analysis focused on the uplink direction. However, in future mobile networks, the downlink is more likely to be the bottleneck of the system capacity because of the asymmetric nature of new services, such as Internet traffic. In this thesis, an in-depth study of the soft handover effects on the downlink direction of WCDMA networks is carried out, leading to a new method of optimising soft handover for maximising the downlink capacity and a new power control approach

    An adaptive step size power control with transmit power control command aided mobility estimation

    Full text link
    Power control is one of the most important mechanisms influencing on the maximum capacity and performance of Wideband Code Division Multiple Access (WCDMA) systems. Power control algorithms used in Universal Mobile Telecommunication System (UMTS) are based on fixed step size algorithms. The algorithms adjust their transmitted power based on Transmit Power Control (TPC) commands. In this paper, we show that there is a significant correlation between TPC sequences and user mobility. We then introduce a new parameter called Consecutive TPC Ratio (CTR), which will be varied by user speeds. A new adaptive power control algorithm is also proposed. This new power control algorithm uses CTRs to adjust power control step sizes. The result shows that the proposed algorithm outperforms fixed step power control

    Channel Estimation And Correction Methods For Ofdma Based Lte Downlink System

    Get PDF
    In present era, cellular communication plays a vital role for communicating over long distance. The number of mobile subscribers is increasing tremendously day by day. 3GPP LTE is the evolution of the UMTS in response to ever-increasing demands for high quality multimedia services according to users\u27 expectations. The average data consumption exceeds hundreds of Megabytes per subscriber per month. To introduce, summarize and get acquainted with this new technology LTE is one of the main objectives of my thesis. The Downlink is always considered an important factor in terms of coverage and capacity aspects in between Downlink and Uplink factors for cellular communication. Orthogonal Frequency Division Multiple Access (OFDMA) and Multiple Input Multiple Output (MIMO) are the new technologies which enhance the performance of the traditional wireless communication experience for downlink. In this thesis, we considered the downlink system for channel estimation by using different algorithms and interpolation methods. Channel Estimation algorithms such as Least Squares Estimation (LSE) and Minimum Mean Square Error (MMSE) have been evaluated for different channel models. The interpolation method used in algorithms is Linear, Piecewise constant, Averaged and Pilot averaged. I measured the performance of these algorithms in terms of Bit Error Rate (BER) and Symbol Error Rate (SER). The results are presented to illustrate the salient concept of the LTE communication system

    A study of UMTS terrestrial radio access performance

    Get PDF
    This thesis considers the performance evaluation of third generation radio networks, in particular UMTS Terrestrial Radio Access (UTRA). First, the performance evaluation methods are presented. The typical capacity of UTRA is estimated using those methods and a few solutions are evaluated to improve the capacity and coverage. The thesis further studies the effect of base station synchronization on the performance of UTRA time division duplex mode. The performance evaluation is based on the combination of theoretical calculations, link and system level simulations, and laboratory and field measurements. It is shown that these different evaluation methods give similar results and – when combined together – they can be used for the radio network development purposes. The simulation results indicate that the typical WCDMA, i.e. UTRA frequency division duplex mode, macro cell capacity is between 600 and 1000 kbps per sector per 5 MHz. The capacity is sensitive to the environment and to the transceiver performance. The results further show that user bit rates up to 2 Mbps can be provided locally for packet data with the basic Rake receiver, but not for full coverage circuit switched connections in macro cells. The following performance enhancement techniques are evaluated in this thesis: soft combining of packet retransmissions, base station multiuser detection and 4-branch base station receiver diversity. The link level simulations show that soft combining can provide a gain up to 2.0 dB, which can be used to increase the capacity up to 60 %. The performance of base station multiuser detection is evaluated with link and system level simulations. It is shown that the studied sub-optimal multiuser detector is able to remove 60-70 % of the intra-cell interference. That gain can be utilized to improve the uplink capacity by 50-100 % or the coverage by 1-2 dB. The performance of 4-branch antenna diversity is evaluated in the simulations and in the field measurements. The results show that the average coverage gain of 4-branch diversity with two separate cross-polarized antennas is 3 dB compared to 2-branch diversity with one cross-polarized antenna. The synchronization requirements of UTRA time division duplex base stations are studied with system simulations. The results show that synchronization is a key requirement for time division duplex operation, especially for the uplink performance. The study indicates that co-location of different operators' base stations is feasible in time division duplex operation only if the two networks are synchronized and if an identical split between uplink and downlink is used.reviewe

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Measurement and Optimization of LTE Performance

    Get PDF
    4G Long Term Evolution (LTE) mobile system is the fourth generation communication system adopted worldwide to provide high-speed data connections and high-quality voice calls. Given the recent deployment by mobile service providers, unlike GSM and UMTS, LTE can be still considered to be in its early stages and therefore many topics still raise great interest among the international scientific research community: network performance assessment, network optimization, selective scheduling, interference management and coexistence with other communication systems in the unlicensed band, methods to evaluate human exposure to electromagnetic radiation are, as a matter of fact, still open issues. In this work techniques adopted to increase LTE radio performances are investigated. One of the most wide-spread solutions proposed by the standard is to implement MIMO techniques and within a few years, to overcome the scarcity of spectrum, LTE network operators will offload data traffic by accessing the unlicensed 5 GHz frequency. Our Research deals with an evaluation of 3GPP standard in a real test best scenario to evaluate network behavior and performance

    Link level performance evaluation and link abstraction for LTE/LTE-advanced downlink

    Get PDF
    Els objectius principals d'aquesta tesis sĂłn l'avaluaciĂł del rendiment a nivell d'enllaç i l'estudi de l'abstracciĂł de l'enllaç pel LTE/LTE-Advanced DL. S’ha desenvolupat un simulador del nivell d'enllaç E-UTRA DL basat en la tecnologia MIMO-OFDM. Es simulen els errors d'estimaciĂł de canal amb un model d'error de soroll additiu GaussiĂ  anomenat CEEM. El resultat d'aquest simulador serveix per avaluar el rendiment a nivell d'enllaç del LTE/LTE-Advanced DL en diferents entorns . La idea bĂ sica dels mĂštodes d'abstracciĂł de l'enllaç Ă©s mapejar el vector de SNRs de les subportadores a un valor escalar, l'anomenada ESNR, la qual Ă©s usada per a predir la BLER. Proposem un innovador mĂštode d'abstracciĂł de l'enllaç que pot predir la BLER amb bona precisiĂł en esvaĂŻments multicamĂ­ i que inclouen els efectes de les retransmissions HARQ. El mĂštode proposat es basa amb l'estimaciĂł de la informaciĂł mĂștua entre els bits transmesos i els LLRs rebuts.The main objectives of this dissertation are the evaluation of the link level performance and the study of link abstraction for LTE/LTE-Advanced DL. An E-UTRA DL link level simulator has been developed based on MIMO-OFDM technology. We simulate channel estimation errors by a Gaussian additive noise error model called CEEM. The result of this simulator serves to evaluate the MIMO-OFDM LTE/LTE-Advanced DL link level performance in different environments. The basic idea of link abstraction methods is to map the vector of the subcarrier SNRs to a single scalar, the ESNR, which is then used to predict the BLER. We propose a novel link abstraction method that can predict the BLER with good accuracy in multipath fading and including the effects of HARQ retransmissions. The proposed method is based on estimating the mutual information between the transmitted bits and the received LLRs.Postprint (published version

    Lo standard LTE

    Get PDF
    Per il sempre crescente traffico dati la rete mobile, attualmente basata sul sistema UMTS, sta cominciando a dimostrare i suoi limiti. Per questo il 3GPP (third Generation Partnership Project) ha avviato la standardizzazione di un nuovo sistema di telecomunicazioni mobile, chiamato LTE (Long Term Evolution), che migliora il precedente ponendo ambiziosi traguardi in quanto a prestazioni. Attualmente il sistema Ăš ancora in fase sperimentale e le prime applicazioni commerciali si avranno solo tra il 2010-2011. Questa tesi ha lo scopo di studiare le principali caratteristiche del livello fisico dell'LTE e valutarne le prestazioni offert
    • 

    corecore