73,079 research outputs found

    Exploring ResNet-18 Estimation Design through Multiple Implementation Iterations and Techniques in Legacy Databases

    Get PDF
    In a rapidly evolving landscape where automated systems and database applications are increasingly crucial, there is a pressing need for precise and efficient object recognition methods. This study contributes to this burgeoning field by examining the ResNet-18 architecture, a proven deep learning model, in the context of fruit image classification. The research employs an elaborate experimental setup featuring a diverse fruit dataset that includes Rambutan, Mango, Santol, Mangosteen, and Guava. The efficacy of single versus multiple ResNet-18 models is compared, shedding light on their relative classification accuracy. A unique aspect of this study is the establishment of a 90% decision threshold, introduced to mitigate the risk of incorrect classification. Our statistical analysis reveals a significant performance advantage of multiple ResNet-18 models over single models, with an average improvement margin of 15%. This finding substantiates the study’s central hypothesis. The implemented 90% decision threshold is determined to play a pivotal role in augmenting the system’s overall accuracy by minimizing false positives. However, it’s worth noting that the increased computational complexity associated with deploying multiple models necessitates further scrutiny. In sum, this study provides a nuanced evaluation of single and multiple ResNet-18 models in the realm of fruit image classification, emphasizing their utility in practical, real-world applications. The research opens avenues for future exploration by refining these methodologies and investigating their applicability to broader object recognition tasks

    Learning Discriminative Stein Kernel for SPD Matrices and Its Applications

    Full text link
    Stein kernel has recently shown promising performance on classifying images represented by symmetric positive definite (SPD) matrices. It evaluates the similarity between two SPD matrices through their eigenvalues. In this paper, we argue that directly using the original eigenvalues may be problematic because: i) Eigenvalue estimation becomes biased when the number of samples is inadequate, which may lead to unreliable kernel evaluation; ii) More importantly, eigenvalues only reflect the property of an individual SPD matrix. They are not necessarily optimal for computing Stein kernel when the goal is to discriminate different sets of SPD matrices. To address the two issues in one shot, we propose a discriminative Stein kernel, in which an extra parameter vector is defined to adjust the eigenvalues of the input SPD matrices. The optimal parameter values are sought by optimizing a proxy of classification performance. To show the generality of the proposed method, three different kernel learning criteria that are commonly used in the literature are employed respectively as a proxy. A comprehensive experimental study is conducted on a variety of image classification tasks to compare our proposed discriminative Stein kernel with the original Stein kernel and other commonly used methods for evaluating the similarity between SPD matrices. The experimental results demonstrate that, the discriminative Stein kernel can attain greater discrimination and better align with classification tasks by altering the eigenvalues. This makes it produce higher classification performance than the original Stein kernel and other commonly used methods.Comment: 13 page

    Attentional Gated Res2Net for Multivariate Time Series Classification

    Full text link
    AbstractMultivariate time series classification is a critical problem in data mining with broad applications. It requires harnessing the inter-relationship of multiple variables and various ranges of temporal dependencies to assign the correct classification label of the time series. Multivariate time series may come from a wide range of sources and be used in various scenarios, bringing the classifier challenge of temporal representation learning. We propose a novel convolutional neural network architecture called Attentional Gated Res2Net for multivariate time series classification. Our model uses hierarchical residual-like connections to achieve multi-scale receptive fields and capture multi-granular temporal information. The gating mechanism enables the model to consider the relations between the feature maps extracted by receptive fields of multiple sizes for information fusion. Further, we propose two types of attention modules, channel-wise attention and block-wise attention, to better leverage the multi-granular temporal patterns. Our experimental results on 14 benchmark multivariate time-series datasets show that our model outperforms several baselines and state-of-the-art methods by a large margin. Our model outperforms the SOTA by a large margin, the classification accuracy of our model is 10.16% better than the SOTA model. Besides, we demonstrate that our model improves the performance of existing models when used as a plugin. Further, based on our experiments and analysis, we provide practical advice on applying our model to a new problem.</jats:p

    Composite large margin classifiers with latent subclasses for heterogeneous biomedical data: Composite Large Margin Classifiers with Latent Subclasses

    Get PDF
    High dimensional classification problems are prevalent in a wide range of modern scientific applications. Despite a large number of candidate classification techniques available to use, practitioners often face a dilemma of choosing between linear and general nonlinear classifiers. Specifically, simple linear classifiers have good interpretability, but may have limitations in handling data with complex structures. In contrast, general nonlinear classifiers are more flexible, but may lose interpretability and have higher tendency for overfitting. In this paper, we consider data with potential latent subgroups in the classes of interest. We propose a new method, namely the Composite Large Margin Classifier (CLM), to address the issue of classification with latent subclasses. The CLM aims to find three linear functions simultaneously: one linear function to split the data into two parts, with each part being classified by a different linear classifier. Our method has comparable prediction accuracy to a general nonlinear classifier, and it maintains the interpretability of traditional linear classifiers. We demonstrate the competitive performance of the CLM through comparisons with several existing linear and nonlinear classifiers by Monte Carlo experiments. Analysis of the Alzheimer’s disease classification problem using CLM not only provides a lower classification error in discriminating cases and controls, but also identifies subclasses in controls that are more likely to develop the disease in the future
    • …
    corecore