565 research outputs found

    The potential of Volunteered Geographic Information (VGI) in future transport systems

    Get PDF
    As transport systems are pushed to the limits in many cities, governments have tried to resolve problems of traffic and congestion by increasing capacity. Miller (2013) contends the need to identify new capabilities (instead of capacity) of the transport infrastructure in order to increase efficiency without extending the physical infrastructure. Kenyon and Lyons (2003) identified integrated traveller information as a facilitator for better transport decisions. Today, with further developments in the use of geographic information systems (GIS) and a greater disposition by the public to provide volunteered geographic information (VGI), the potential of information is not only integrated across modes but also user-generated, real-time and available on smartphones anywhere. This geographic information plays today an important role in sectors such as politics, businesses and entertainment, and presumably this would extend to transport in revealing people’s preferences for mobility and therefore be useful for decision-making. The widespread availability of networks and smartphones offer new opportunities supported by apps and crowdsourcing through social media such as the successful traffic and navigation app Waze, car sharing programmes such as Zipcar, and ride sharing systems such as Uber. This study aims to develop insights into the potential of governments to use voluntary (crowdsourced) geographic information effectively to achieve sustainable mobility. A review of the literature and existing technology informs this article. Further research into this area is identified and presented at the end of the paper.peer-reviewe

    Modelling public transport accessibility with Monte Carlo stochastic simulations: A case study of Ostrava

    Get PDF
    Activity-based micro-scale simulation models for transport modelling provide better evaluations of public transport accessibility, enabling researchers to overcome the shortage of reliable real-world data. Current simulation systems face simplifications of personal behaviour, zonal patterns, non-optimisation of public transport trips (choice of the fastest option only), and do not work with real targets and their characteristics. The new TRAMsim system uses a Monte Carlo approach, which evaluates all possible public transport and walking origin-destination (O-D) trips for k-nearest stops within a given time interval, and selects appropriate variants according to the expected scenarios and parameters derived from local surveys. For the city of Ostrava, Czechia, two commuting models were compared based on simulated movements to reach (a) randomly selected large employers and (b) proportionally selected employers using an appropriate distance-decay impedance function derived from various combinations of conditions. The validation of these models confirms the relevance of the proportional gravity-based model. Multidimensional evaluation of the potential accessibility of employers elucidates issues in several localities, including a high number of transfers, high total commuting time, low variety of accessible employers and high pedestrian mode usage. The transport accessibility evaluation based on synthetic trips offers an improved understanding of local situations and helps to assess the impact of planned changes.Web of Science1124art. no. 709

    Understanding Urban Mobility and Pedestrian Movement

    Get PDF
    Urban environments continue to expand and mutate, both in terms of size of urban area and number of people commuting daily as well as the number of options for personal mobility. City layouts and infrastructure also change constantly, subject to both short-term and long-term imperatives. Transportation networks have attracted particular attention in recent years, due to efforts to incorporate “green” options, enabling positive lifestyle choices such as walking or cycling commutes. In this chapter we explore the pedestrian viewpoint, aids to familiarity with and ease of navigation in the urban environment, and the impact of novel modes of individual transport (as options such as smart urban bicycles and electric scooters increasingly become the norm). We discuss principal factors influencing rapid transit to daily and leisure destinations, such as schools, offices, parks, and entertainment venues, but also those which facilitate rapid evacuation and movement of large crowds from these locations, characterized by high occupation density or throughput. The focus of the chapter is on understanding and representing pedestrian behavior through the agent-based modeling paradigm, allowing both large numbers of individual actions with active awareness of the environment to be simulated and pedestrian group movements to be modeled on real urban networks, together with congestion and evacuation pattern visualization

    Sources of VGI for Mapping

    Get PDF

    Human mobility, cognition and GISc:Conference proceedings

    Get PDF

    Mapping and the Citizen Sensor

    Get PDF
    The role of citizens in mapping has evolved considerably over the last decade. This chapter outlines the background to citizen sensing in mapping and sets the scene for the chapters that follow, which highlight some of the main outcomes of a collaborative programme of work to enhance the role of citizens in mapping

    Spatial modelling of air pollution for open smart cities

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsHalf of the world’s population already lives in cities, and by 2050 two-thirds of the world’s population are expected to further move into urban areas. This urban growth leads to various environmental, social and economic challenges in cities, hampering the Quality of Life (QoL). Although recent trends in technologies equip us with various tools and techniques that can help in improving quality of life, air pollution remains the ‘biggest environmental health risk’ for decades, impacting individuals’ quality of life and well-being according to World Health Organisation (WHO). Many efforts have been made to measure air quality, but the sparse arrangement of monitoring stations and the lack of data currently make it challenging to develop systems that can capture within-city air pollution variations. To solve this, flexible methods that allow air quality monitoring using easily accessible data sources at the city level are desirable. The present thesis seeks to widen the current knowledge concerning detailed air quality monitoring by developing approaches that can help in tackling existing gaps in the literature. The thesis presents five contributions which address the issues mentioned above. The first contribution is the choice of a statistical method which can help in utilising existing open data and overcoming challenges imposed by the bigness of data for detailed air pollution monitoring. The second contribution concerns the development of optimisation method which helps in identifying optimal locations for robust air pollution modelling in cities. The third contribution of the thesis is also an optimisation method which helps in initiating systematic volunteered geographic information (VGI) campaigns for detailed air pollution monitoring by addressing sparsity and scarcity challenges of air pollution data in cities. The fourth contribution is a study proposing the involvement of housing companies as a stakeholder in the participatory framework for air pollution data collection, which helps in overcoming certain gaps existing in VGI-based approaches. Finally, the fifth contribution is an open-hardware system that aids in collecting vehicular traffic data using WiFi signal strength. The developed hardware can help in overcoming traffic data scarcity in cities, which limits detailed air pollution monitoring. All the contributions are illustrated through case studies in Muenster and Stuttgart. Overall, the thesis demonstrates the applicability of the developed approaches for enabling air pollution monitoring at the city-scale under the broader framework of the open smart city and for urban health research
    corecore