4,177 research outputs found

    Detección automática de la enfermedad de Parkinson usando componentes moduladoras de señales de voz

    Get PDF
    Parkinson’s Disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. This disorder mainly affects older adults at a rate of about 2%, and about 89% of people diagnosed with PD also develop speech disorders. This has led scientific community to research information embedded in speech signal from Parkinson’s patients, which has allowed not only a diagnosis of the pathology but also a follow-up of its evolution. In recent years, a large number of studies have focused on the automatic detection of pathologies related to the voice, in order to make objective evaluations of the voice in a non-invasive manner. In cases where the pathology primarily affects the vibratory patterns of vocal folds such as Parkinson’s, the analyses typically performed are sustained over vowel pronunciations. In this article, it is proposed to use information from slow and rapid variations in speech signals, also known as modulating components, combined with an effective dimensionality reduction approach that will be used as input to the classification system. The proposed approach achieves classification rates higher than 88  %, surpassing the classical approach based on Mel Cepstrals Coefficients (MFCC). The results show that the information extracted from slow varying components is highly discriminative for the task at hand, and could support assisted diagnosis systems for PD.La Enfermedad de Parkinson (EP) es el segundo trastorno neurodegenerativo más común después de la enfermedad de Alzheimer. Este trastorno afecta principalmente a los adultos mayores con una tasa de aproximadamente el 2%, y aproximadamente el 89% de las personas diagnosticadas con EP también desarrollan trastornos del habla. Esto ha llevado a la comunidad científica a investigar información embebida en las señales de voz de pacientes diagnosticados con la EP, lo que ha permitido no solo un diagnóstico de la patología sino también un seguimiento de su evolución. En los últimos años, una gran cantidad de estudios se han centrado en la detección automática de patologías relacionadas con la voz, a fin de realizar evaluaciones objetivas de manera no invasiva. En los casos en que la patología afecta principalmente los patrones vibratorios de las cuerdas vocales como el Parkinson, los análisis que se realizan típicamente sobre grabaciones de vocales sostenidas. En este artículo, se propone utilizar información de componentes con variación lenta de las señales de voz, también conocidas como componentes de modulación, combinadas con un enfoque efectivo de reducción de dimensiónalidad que se utilizará como entrada al sistema de clasificación. El enfoque propuesto logra tasas de clasificación superiores al 88  %, superando el enfoque clásico basado en los Coeficientes Cepstrales de Mel (MFCC). Los resultados muestran que la información extraída de componentes que varían lentamente es altamente discriminatoria para el problema abordado y podría apoyar los sistemas de diagnóstico asistido para EP

    Deep Room Recognition Using Inaudible Echos

    Full text link
    Recent years have seen the increasing need of location awareness by mobile applications. This paper presents a room-level indoor localization approach based on the measured room's echos in response to a two-millisecond single-tone inaudible chirp emitted by a smartphone's loudspeaker. Different from other acoustics-based room recognition systems that record full-spectrum audio for up to ten seconds, our approach records audio in a narrow inaudible band for 0.1 seconds only to preserve the user's privacy. However, the short-time and narrowband audio signal carries limited information about the room's characteristics, presenting challenges to accurate room recognition. This paper applies deep learning to effectively capture the subtle fingerprints in the rooms' acoustic responses. Our extensive experiments show that a two-layer convolutional neural network fed with the spectrogram of the inaudible echos achieve the best performance, compared with alternative designs using other raw data formats and deep models. Based on this result, we design a RoomRecognize cloud service and its mobile client library that enable the mobile application developers to readily implement the room recognition functionality without resorting to any existing infrastructures and add-on hardware. Extensive evaluation shows that RoomRecognize achieves 99.7%, 97.7%, 99%, and 89% accuracy in differentiating 22 and 50 residential/office rooms, 19 spots in a quiet museum, and 15 spots in a crowded museum, respectively. Compared with the state-of-the-art approaches based on support vector machine, RoomRecognize significantly improves the Pareto frontier of recognition accuracy versus robustness against interfering sounds (e.g., ambient music).Comment: 29 page

    Implementation and Evaluation of Acoustic Distance Measures for Syllables

    Get PDF
    Munier C. Implementation and Evaluation of Acoustic Distance Measures for Syllables. Bielefeld (Germany): Bielefeld University; 2011.In dieser Arbeit werden verschiedene akustische Ähnlichkeitsmaße für Silben motiviert und anschließend evaluiert. Der Mahalanobisabstand als lokales Abstandsmaß für einen Dynamic-Time-Warping-Ansatz zum Messen von akustischen Abständen hat die Fähigkeit, Silben zu unterscheiden. Als solcher erlaubt er die Klassifizierung von Silben mit einer Genauigkeit, die für die Klassifizierung von kleinen akustischen Einheiten üblich ist (60 Prozent für eine Nächster-Nachbar-Klassifizierung auf einem Satz von zehn Silben für Samples eines einzelnen Sprechers). Dieses Maß kann durch verschiedene Techniken verbessert werden, die jedoch seine Ausführungsgeschwindigkeit verschlechtern (Benutzen von mehr Mischverteilungskomponenten für die Schätzung von Kovarianzen auf einer Gaußschen Mischverteilung, Benutzen von voll besetzten Kovarianzmatrizen anstelle von diagonalen Kovarianzmatrizen). Durch experimentelle Evaluierung wird deutlich, dass ein gut funktionierender Algorithmus zur Silbensegmentierung, welcher eine akkurate Schätzung von Silbengrenzen erlaubt, für die korrekte Berechnung von akustischen Abständen durch die in dieser Arbeit entwickelten Ähnlichkeitsmaße unabdingbar ist. Weitere Ansätze für Ähnlichkeitsmaße, die durch ihre Anwendung in der Timbre-Klassifizierung von Musikstücken motiviert sind, zeigen keine adäquate Fähigkeit zur Silbenunterscheidung.In this work, several acoustic similarity measures for syllables are motivated and successively evaluated. The Mahalanobis distance as local distance measure for a dynamic time warping approach to measure acoustic distances is a measure that is able to discriminate syllables and thus allows for syllable classification with an accuracy that is common to the classification of small acoustic units (60 percent for a nearest neighbor classification of a set of ten syllables using samples of a single speaker). This measure can be improved using several techniques that however impair the execution speed of the distance measure (usage of more mixture density components for the estimation of covariances from a Gaussian mixture model, usage of fully occupied covariance matrices instead of diagonal covariance matrices). Through experimental evaluation it becomes evident that a decently working syllable segmentation algorithm allowing for accurate syllable border estimations is essential to the correct computation of acoustic distances by the similarity measures developed in this work. Further approaches for similarity measures which are motivated by their usage in timbre classification of music pieces do not show adequate syllable discrimination abilities

    Studies on noise robust automatic speech recognition

    Get PDF
    Noise in everyday acoustic environments such as cars, traffic environments, and cafeterias remains one of the main challenges in automatic speech recognition (ASR). As a research theme, it has received wide attention in conferences and scientific journals focused on speech technology. This article collection reviews both the classic and novel approaches suggested for noise robust ASR. The articles are literature reviews written for the spring 2009 seminar course on noise robust automatic speech recognition (course code T-61.6060) held at TKK

    Machine Learning Mitigants for Speech Based Cyber Risk

    Get PDF
    Statistical analysis of speech is an emerging area of machine learning. In this paper, we tackle the biometric challenge of Automatic Speaker Verification (ASV) of differentiating between samples generated by two distinct populations of utterances, those of an authentic human voice and those generated by a synthetic one. Solving such an issue through a statistical perspective foresees the definition of a decision rule function and a learning procedure to identify the optimal classifier. Classical state-of-the-art countermeasures rely on strong assumptions such as stationarity or local-stationarity of speech that may be atypical to encounter in practice. We explore in this regard a robust non-linear and non-stationary signal decomposition method known as the Empirical Mode Decomposition combined with the Mel-Frequency Cepstral Coefficients in a novel fashion with a refined classifier technique known as multi-kernel Support Vector machine. We undertake significant real data case studies covering multiple ASV systems using different datasets, including the ASVSpoof 2019 challenge database. The obtained results overwhelmingly demonstrate the significance of our feature extraction and classifier approach versus existing conventional methods in reducing the threat of cyber-attack perpetrated by synthetic voice replication seeking unauthorised access

    Data-driven multivariate and multiscale methods for brain computer interface

    Get PDF
    This thesis focuses on the development of data-driven multivariate and multiscale methods for brain computer interface (BCI) systems. The electroencephalogram (EEG), the most convenient means to measure neurophysiological activity due to its noninvasive nature, is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its multichannel recording nature require a new set of data-driven multivariate techniques to estimate more accurately features for enhanced BCI operation. Also, a long term goal is to enable an alternative EEG recording strategy for achieving long-term and portable monitoring. Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary EEG signal into a set of components which are highly localised in time and frequency. It is shown that the complex and multivariate extensions of EMD, which can exploit common oscillatory modes within multivariate (multichannel) data, can be used to accurately estimate and compare the amplitude and phase information among multiple sources, a key for the feature extraction of BCI system. A complex extension of local mean decomposition is also introduced and its operation is illustrated on two channel neuronal spike streams. Common spatial pattern (CSP), a standard feature extraction technique for BCI application, is also extended to complex domain using the augmented complex statistics. Depending on the circularity/noncircularity of a complex signal, one of the complex CSP algorithms can be chosen to produce the best classification performance between two different EEG classes. Using these complex and multivariate algorithms, two cognitive brain studies are investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user attention to a sound source among a mixture of sound stimuli, which is aimed at improving the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments elicited by taste and taste recall are examined to determine the pleasure and displeasure of a food for the implementation of affective computing. The separation between two emotional responses is examined using real and complex-valued common spatial pattern methods. Finally, we introduce a novel approach to brain monitoring based on EEG recordings from within the ear canal, embedded on a custom made hearing aid earplug. The new platform promises the possibility of both short- and long-term continuous use for standard brain monitoring and interfacing applications

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Replay detection in voice biometrics: an investigation of adaptive and non-adaptive front-ends

    Full text link
    Among various physiological and behavioural traits, speech has gained popularity as an effective mode of biometric authentication. Even though they are gaining popularity, automatic speaker verification systems are vulnerable to malicious attacks, known as spoofing attacks. Among various types of spoofing attacks, replay attack poses the biggest threat due to its simplicity and effectiveness. This thesis investigates the importance of 1) improving front-end feature extraction via novel feature extraction techniques and 2) enhancing spectral components via adaptive front-end frameworks to improve replay attack detection. This thesis initially focuses on AM-FM modelling techniques and their use in replay attack detection. A novel method to extract the sub-band frequency modulation (FM) component using the spectral centroid of a signal is proposed, and its use as a potential acoustic feature is also discussed. Frequency Domain Linear Prediction (FDLP) is explored as a method to obtain the temporal envelope of a speech signal. The temporal envelope carries amplitude modulation (AM) information of speech resonances. Several features are extracted from the temporal envelope and the FDLP residual signal. These features are then evaluated for replay attack detection and shown to have significant capability in discriminating genuine and spoofed signals. Fusion of AM and FM-based features has shown that AM and FM carry complementary information that helps distinguish replayed signals from genuine ones. The importance of frequency band allocation when creating filter banks is studied as well to further advance the understanding of front-ends for replay attack detection. Mechanisms inspired by the human auditory system that makes the human ear an excellent spectrum analyser have been investigated and integrated into front-ends. Spatial differentiation, a mechanism that provides additional sharpening to auditory filters is one of them that is used in this work to improve the selectivity of the sub-band decomposition filters. Two features are extracted using the improved filter bank front-end: spectral envelope centroid magnitude (SECM) and spectral envelope centroid frequency (SECF). These are used to establish the positive effect of spatial differentiation on discriminating spoofed signals. Level-dependent filter tuning, which allows the ear to handle a large dynamic range, is integrated into the filter bank to further improve the front-end. This mechanism converts the filter bank into an adaptive one where the selectivity of the filters is varied based on the input signal energy. Experimental results show that this leads to improved spoofing detection performance. Finally, deep neural network (DNN) mechanisms are integrated into sub-band feature extraction to develop an adaptive front-end that adjusts its characteristics based on the sub-band signals. A DNN-based controller that takes sub-band FM components as input, is developed to adaptively control the selectivity and sensitivity of a parallel filter bank to enhance the artifacts that differentiate a replayed signal from a genuine signal. This work illustrates gradient-based optimization of a DNN-based controller using the feedback from a spoofing detection back-end classifier, thus training it to reduce spoofing detection error. The proposed framework has displayed a superior ability in identifying high-quality replayed signals compared to conventional non-adaptive frameworks. All techniques proposed in this thesis have been evaluated on well-established databases on replay attack detection and compared with state-of-the-art baseline systems

    Automatic speech recognition: from study to practice

    Get PDF
    Today, automatic speech recognition (ASR) is widely used for different purposes such as robotics, multimedia, medical and industrial application. Although many researches have been performed in this field in the past decades, there is still a lot of room to work. In order to start working in this area, complete knowledge of ASR systems as well as their weak points and problems is inevitable. Besides that, practical experience improves the theoretical knowledge understanding in a reliable way. Regarding to these facts, in this master thesis, we have first reviewed the principal structure of the standard HMM-based ASR systems from technical point of view. This includes, feature extraction, acoustic modeling, language modeling and decoding. Then, the most significant challenging points in ASR systems is discussed. These challenging points address different internal components characteristics or external agents which affect the ASR systems performance. Furthermore, we have implemented a Spanish language recognizer using HTK toolkit. Finally, two open research lines according to the studies of different sources in the field of ASR has been suggested for future work
    corecore