5,285 research outputs found

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    Deferred lightweight indexing for log-structured key-value stores

    Get PDF
    The recent shift towards write-intensive workload on bigdata (e.g., financial trading, social user-generated data streams)has pushed the proliferation of log-structured key-value stores, represented by Google's BigTable [1], Apache HBase [2] andCassandra [3]. While providing key-based data access with aPut/Get interface, these key-value stores do not support value-based access methods, which significantly limits their applicability in modern web and database applications. In this paper, we present DELI, a DEferred Lightweight Indexing scheme on the log-structured key-value stores. To index intensively updated bigdata in real time, DELI aims at making the index maintenance as lightweight as possible. The key idea is to apply an append-only design for online index maintenance and to collect index garbage at carefully chosen time. DELI optimizes the performance of index garbage collection through tightly coupling its execution with a native routine process called compaction. The DELI'ssystem design is fault-tolerant and generic (to most key-valuestores), we implemented a prototype of DELI based on HBasewithout internal code modification. Our experiments show that the DELI offers significant performance advantage for the write-intensive index maintenance

    Honeycomb: ordered key-value store acceleration on an FPGA-based SmartNIC

    Full text link
    In-memory ordered key-value stores are an important building block in modern distributed applications. We present Honeycomb, a hybrid software-hardware system for accelerating read-dominated workloads on ordered key-value stores that provides linearizability for all operations including scans. Honeycomb stores a B-Tree in host memory, and executes SCAN and GET on an FPGA-based SmartNIC, and PUT, UPDATE and DELETE on the CPU. This approach enables large stores and simplifies the FPGA implementation but raises the challenge of data access and synchronization across the slow PCIe bus. We describe how Honeycomb overcomes this challenge with careful data structure design, caching, request parallelism with out-of-order request execution, wait-free read operations, and batching synchronization between the CPU and the FPGA. For read-heavy YCSB workloads, Honeycomb improves the throughput of a state-of-the-art ordered key-value store by at least 1.8x. For scan-heavy workloads inspired by cloud storage, Honeycomb improves throughput by more than 2x. The cost-performance, which is more important for large-scale deployments, is improved by at least 1.5x on these workloads

    Using Java for distributed computing in the Gaia satellite data processing

    Get PDF
    In recent years Java has matured to a stable easy-to-use language with the flexibility of an interpreter (for reflection etc.) but the performance and type checking of a compiled language. When we started using Java for astronomical applications around 1999 they were the first of their kind in astronomy. Now a great deal of astronomy software is written in Java as are many business applications. We discuss the current environment and trends concerning the language and present an actual example of scientific use of Java for high-performance distributed computing: ESA's mission Gaia. The Gaia scanning satellite will perform a galactic census of about 1000 million objects in our galaxy. The Gaia community has chosen to write its processing software in Java. We explore the manifold reasons for choosing Java for this large science collaboration. Gaia processing is numerically complex but highly distributable, some parts being embarrassingly parallel. We describe the Gaia processing architecture and its realisation in Java. We delve into the astrometric solution which is the most advanced and most complex part of the processing. The Gaia simulator is also written in Java and is the most mature code in the system. This has been successfully running since about 2005 on the supercomputer "Marenostrum" in Barcelona. We relate experiences of using Java on a large shared machine. Finally we discuss Java, including some of its problems, for scientific computing.Comment: Experimental Astronomy, August 201
    corecore