129 research outputs found

    Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Get PDF
    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case

    Self-configurable radio receiver system and method for use with signals without prior knowledge of signal defining characteristics

    Get PDF
    A method, radio receiver, and system to autonomously receive and decode a plurality of signals having a variety of signal types without a priori knowledge of the defining characteristics of the signals is disclosed. The radio receiver is capable of receiving a signal of an unknown signal type and, by estimating one or more defining characteristics of the signal, determine the type of signal. The estimated defining characteristic(s) is/are utilized to enable the receiver to determine other defining characteristics. This in turn, enables the receiver, through multiple iterations, to make a maximum-likelihood (ML) estimate for each of the defining characteristics. After the type of signal is determined by its defining characteristics, the receiver selects an appropriate decoder from a plurality of decoders to decode the signal

    A Hardware Implementation of a Coherent SOQPSK-TG Demodulator for FEC Applications

    Get PDF
    This thesis presents a hardware design of a coherent demodulator for shaped offset quadrature phase shift keying, telemetry group version (SOQPSK-TG) for use in forward error correction (FEC) applications. Implementation details for data sequence detection, symbol timing synchronization, carrier phase synchronization, and block recovery are described. This decision-directed demodulator is based on maximum likelihood principles, and is efficiently implemented by the soft output Viterbi algorithm (SOVA). The design is intended for use in a field-programmable gate array (FPGA). Simulation results of the demodulator's performance in the additive white Gaussian noise channel are compared with a Matlab reference model that is known to be correct. In addition, hardware-specific parameters are presented. Finally, suggestions for future work and improvements are discussed

    Telemetering and telecommunications research

    Get PDF
    The New Mexico State University (NMSU) Center for Space Telemetering and Telecommunications systems is engaged in advanced communications systems research. Four areas of study that are being sponsored concern investigations into the use of trellis-coded modulation (TCM). In particular, two areas concentrate on carrier synchronization research in TCM M-ary phase shift key (MPSK) systems. A third research topic is the study of interference effects on TCM, while the fourth research area is in the field of concatenated TCM systems

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    Improved timing recovery in wireless mobile receivers

    Get PDF
    The problem of timing recovery in wireless mobile receiver systems is critical. This is partly because timing recovery functions must follow rapid parameter changes inherent in mobile systems and partly because both bandwidth and power must be conserved in low signal to noise ratio communication channels. The ultimate goal is therefore to achieve a low bit error rate on the recovered information for improving QoS provisioning to terminal mobile users. Traditional timing recovery methods have over-relied on phase-locked loops for timing information adjustment. However, associated schemes do not exploit code properties. This leads to synchronization difficulties in digital receivers separated from transmitters by lossy channels. In this paper we present a soft timing phase estimation algorithm for wireless mobile receivers in low signal to noise ratios. In order to develop a bandwidth and power efficient timing recovery method for wireless mobile receivers, a raised cosine filter and a multilevel phase shift keying modulation scheme are implemented and no clock signals are transmitted to the receiver. In the proposed method, the receiver exploits the soft decisions computed at each turbo decoding iteration to provide reliable estimates of a soft timing signal, which in turn, improves the decoding time. The derived method, based on sequential minimization techniques, approaches the theoretical Cramer-Rao bound with unbiased estimates within a few iterations.Key Words: discrete polyphase matched filters, maximum likelihood estimators, iterative turbo receivers, log-MAP b

    Advanced modulation technology development for earth station demodulator applications. Coded modulation system development

    Get PDF
    A jointly optimized coded modulation system is described which was designed, built, and tested by COMSAT Laboratories for NASA LeRC which provides a bandwidth efficiency of 2 bits/s/Hz at an information rate of 160 Mbit/s. A high speed rate 8/9 encoder with a Viterbi decoder and an Octal PSK modem are used to achieve this. The BER performance is approximately 1 dB from the theoretically calculated value for this system at a BER of 5 E-7 under nominal conditions. The system operates in burst mode for downlink applications and tests have demonstrated very little degradation in performance with frequency and level offset. Unique word miss rate measurements were conducted which demonstrate reliable acquisition at low values of Eb/No. Codec self tests have verified the performance of this subsystem in a stand alone mode. The codec is capable of operation at a 200 Mbit/s information rate as demonstrated using a codec test set which introduces noise digitally. The measured performance is within 0.2 dB of the computer simulated predictions. A gate array implementation of the most time critical element of the high speed Viterbi decoder was completed. This gate array add-compare-select chip significantly reduces the power consumption and improves the manufacturability of the decoder. This chip has general application in the implementation of high speed Viterbi decoders

    Hybrid receiver study

    Get PDF
    The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions

    Shuttle S-band communications technical concepts

    Get PDF
    Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed

    Displays, memories, and signal processing: A compilation

    Get PDF
    Articles on electronics systems and techniques were presented. The first section is on displays and other electro-optical systems; the second section is devoted to signal processing. The third section presented several new memory devices for digital equipment, including articles on holographic memories. The latest patent information available is also given
    • …
    corecore