185 research outputs found

    A Satellite Assessment of the Urban Heat Island in Morocco

    Get PDF
    Urban ecosystems interact with surroundings via land cover changes and their subsequent impact on surface temperature. In emerging countries, large urban agglomerations often form around cities, and only few studies have evaluated their impact. This study carries out the first ever large-scale assessment of urban heat island (UHI) and reflects on its mitigation in Morocco.The analysis reveals a well-defined UHI in urban-areas built within vegetated lands and an urban heat sink (UHS) in urban-areas built within arid regions. Both UHI and UHS amplitudes are higher during day than nighttime, emphasizing vegetation physiological activity. We show a monotonic increase in UHI amplitude with urban-area size. However, unlike previous studies, our analysis shows that as urban-areas built in desert-like environments grow in size, the UHS gradually decreases to ultimately turn into an UHI. On average, cities built within vegetation are warmer than rural fringe by 1.51C during daytime. This suggests that daytime urban heating may exacerbate the potential climate warming. Our results also suggest that adapted trees constitute a natural cooling mechanism and should be part of urban heating mitigation in Morocco

    Impact of land use change on urban surface temperature and urban green space planning; case study of the island of Bali, Indonesia

    Get PDF
    Land use and surface temperature were monitored from 1995 to 2013 to examine green space development in Bali using Landsat and ASTER imageries. Urban areas were formed by conversion of vegetation and paddy fields. Heat islands with surface temperature of over 29 ÂşC were found and influenced by urban area types. High priority, low priority and not a priority zones for green space were resulted by weighted overlay of LST, NDVI and urban area types

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Climate Change and Environmental Sustainability- Volume 5

    Get PDF
    This volume of Climate Change and Environmental Sustainability covers topics on greenhouse gas emissions, climatic impacts, climate models and prediction, and analytical methods. Issues related to two major greenhouse gas emissions, namely of carbon dioxide and methane, particularly in wetlands and agriculture sector, and radiative energy flux variations along with cloudiness are explored in this volume. Further, climate change impacts such as rainfall, heavy lake-effect snowfall, extreme temperature, impacts on grassland phenology, impacts on wind and wave energy, and heat island effects are explored. A major focus of this volume is on climate models that are of significance to projection and to visualise future climate pathways and possible impacts and vulnerabilities. Such models are widely used by scientists and for the generation of mitigation and adaptation scenarios. However, dealing with uncertainties has always been a critical issue in climate modelling. Therefore, methods are explored for improving climate projection accuracy through addressing the stochastic properties of the distributions of climate variables, addressing variational problems with unknown weights, and improving grid resolution in climatic models. Results reported in this book are conducive to a better understanding of global warming mechanisms, climate-induced impacts, and forecasting models. We expect the book to benefit decision makers, practitioners, and researchers in different fields and contribute to climate change adaptation and mitigation

    Urban and regional heat island adaptation measures in the Netherlands

    Get PDF
    The urban planner´s role should be adapted to the current globalised and overspecialised economic and environmental context, envisioning a balance at the regional scale, apprehending not only new technologies, but also new mapping principles, that allow obtaining multidisciplinary integral overviews since the preliminary stages of the design process. The urban heat Island (UHI) is one of the main phenomena affecting the urban climate. In the Netherlands, during the heat wave of 2006, more than 1,000 extra deaths were registered. UHI-related parameters are an example of new elements that should be taken into consideration since the early phases of the design process. PROBLEM STATEMENT Thus, the development of urban design guidelines to reduce the heat islands in Dutch cities and regions requires first an overall reflection on the heat island phenomenom (relevance of the large scale assessment, existing tools, instruments) and proposal of integrative and catalysing mapping strategies and then a specific assessment of the phenomenom at the selected locations in The Netherlands (testing those principles). MAIN RESEARCH QUESTION Could the use of satellite imagery help analyse the UHI in the Netherlands and contribute to suggest catalysing mitigation acions actions implementable in the existing urban context of the cities, regions and provinces assessed? METHOD The development of urban design principles that aim at reaching a physical balance at the regional scale is critical to ensure a reduction of the UHI effect. Landsat and Modis satellite imagery can be analysed and processed using ATCOR 2/3, ENVI 4.7 and GIS, allowing not only a neighbourhood, city and regional scale assessment, but also generating holistic catalysing mapping typologies: game-board, rhizome, layering and drift, which are critical to ensure the integration of all parameters. The scientific inputs need to be combined not only with other disciplines but often also with existing urban plans. The connection between scientific research and existing agreed visions is critical to ensure the integration of new aspects into the plans. RESULTS At the neighbourhood level the areas that have a greater heat concentration in the cities of Delft, Leiden, Gouda, Utrecht and Den Bosch are the city centres characterised by their red ceramic roof tiles, brick street paving, and canals. Several mitigation strategies could be implemented to improve the UHI effect in those areas; however, since the city centres are consolidated and listed urban areas, the mitigation measures that would be easier to implement would consist in improving the roof albedo. A consistent implementation of albedo improvement measures (improving the thermal behaviour not only of flat roofs, but also of tiled pitched roofs) of all roofs included in the identified hotspots (with an average storage heat flux greater than 90 W/m2) would help reduce the temperatures between 1.4°C and 3°C. Pre-war and post-war compact and ground-based neighbourhoods present similar thermal behaviour of the surface cover, and green neighbourhoods and small urban centres also present similar thermal behaviour. At the city scale the analysis of 21 medium-size cities in the province of North Brabant, which belongs to the South region of the county -in relative terms the most affected by the UHI phenomenon during the heat wave of 2006-, reveals that albedo and normalised difference vegetation index (NDVI) are the most relevant parameters influencing the average nightime land surface temperature (LST). Thus, imperviousness, distance to the nearest town and the area of the cities do not seem to play a significant role in the LST night values for the medium-size cities analysed in the region of North Brabant, which do not exceed 7,700 ha in any case. The future growth of most medium-size cities of the regions will not per se aggravate the UHI phenomenon; in turn it will be the design of the new neighbourhoods that will impact the formation of urban heat in the province. The average day LST of provincial parks in South Holland varies depending on the land use. The analysis of the average night LST varies depending of the land use of the patches. The following surfaces are arranged from the lowest to the highest temperatures: water surfaces, forests, cropland, and greenhouse areas. For each of these land uses, NDVI, imperviousness and landscape shape index (LSI) shape index influence the thermal behaviour of the patches differently. NDVI is inversely correlated to day LST for all categories, imperviousness is correlated to day LST for all areas which do not comprise a significant presence of greenhouses (grassland and built patches) and inversely correlated to LST for areas with a high presence of greenhouses (cropland and warehouses). Greenhouse surfaces have highly reflective roofs, which contribute to the reduction of day LST. Finally, landscape shape index varies depending on the nature of the surrounding patches, especially for small patches (built areas, forests and greenhouse areas). When the patches analysed are surrounded by warmer land uses, slender and scattered patches are warmer, more compact and large ones are cooler. In turn, when they are surrounded by cooler patches it is the opposite: slenderer and scattered patches are cooler and more compact and larger ones are warmer. In Midden-Delfland (1 of the 6 South Holland provincial parks), most of the hotspots surrounding the park are adjacent to grassland patches. The measure to increase the cooling capacity of those patches would consist in a change of land use and/or an increase of NDVI of the existing grassland patches. CONCLUSIONS Satellite imagery can be used not only to analyse the heat island phenomenom in Dutch neighbourhoods, cities and regions (identify neighbourhoods with highest surface temperature, identify impact of city size and morphology in surface temperature, calcuate average surface temperature for different land uses…), but also to suggest mitigation actions for the areas assessed. Moreover, satellite imagery is here used to generate catalysing mapping typologies: game-board, rhizome, layering and drift, ensuring that the measures proposed remain accurate enough to actualy be efficient and open enough to be compatible with the rest of urban planning priorities

    Urban and regional heat island adaptation measures in the Netherlands

    Get PDF
    The urban planner´s role should be adapted to the current globalised and overspecialised economic and environmental context, envisioning a balance at the regional scale, apprehending not only new technologies, but also new mapping principles, that allow obtaining multidisciplinary integral overviews since the preliminary stages of the design process. The urban heat Island (UHI) is one of the main phenomena affecting the urban climate. In the Netherlands, during the heat wave of 2006, more than 1,000 extra deaths were registered. UHI-related parameters are an example of new elements that should be taken into consideration since the early phases of the design process. Problem statement Thus, the development of urban design guidelines to reduce the heat islands in Dutch cities and regions requires first an overall reflection on the heat island phenomenom (relevance of the large scale assessment, existing tools, instruments) and proposal of integrative and catalysing mapping strategies and then a specific assessment of the phenomenom at the selected locations in The Netherlands (testing those principles). Main research question Could the use of satellite imagery help analyse the UHI in the Netherlands and contribute to suggest catalysing mitigation acions actions implementable in the existing urban context of the cities, regions and provinces assessed? Method The development of urban design principles that aim at reaching a physical balance at the regional scale is critical to ensure a reduction of the UHI effect. Landsat and Modis satellite imagery can be analysed and processed using ATCOR 2/3, ENVI 4.7 and GIS, allowing not only a neighbourhood, city and regional scale assessment, but also generating holistic catalysing mapping typologies: game-board, rhizome, layering and drift, which are critical to ensure the integration of all parameters. The scientific inputs need to be combined not only with other disciplines but often also with existing urban plans. The connection between scientific research and existing agreed visions is critical to ensure the integration of new aspects into the plans. Results At the neighbourhood level the areas that have a greater heat concentration in the cities of Delft, Leiden, Gouda, Utrecht and Den Bosch are the city centres characterised by their red ceramic roof tiles, brick street paving, and canals. Several mitigation strategies could be implemented to improve the UHI effect in those areas; however, since the city centres are consolidated and listed urban areas, the mitigation measures that would be easier to implement would consist in improving the roof albedo. A consistent implementation of albedo improvement measures (improving the thermal behaviour not only of flat roofs, but also of tiled pitched roofs) of all roofs included in the identified hotspots (with an average storage heat flux greater than 90 W/m2) would help reduce the temperatures between 1.4°C and 3°C. Pre-war and post-war compact and ground-based neighbourhoods present similar thermal behaviour of the surface cover, and green neighbourhoods and small urban centres also present similar thermal behaviour. At the city scale the analysis of 21 medium-size cities in the province of North Brabant, which belongs to the South region of the county -in relative terms the most affected by the UHI phenomenon during the heat wave of 2006-, reveals that albedo and normalised difference vegetation index (NDVI) are the most relevant parameters influencing the average nightime land surface temperature (LST). Thus, imperviousness, distance to the nearest town and the area of the cities do not seem to play a significant role in the LST night values for the medium-size cities analysed in the region of North Brabant, which do not exceed 7,700 ha in any case. The future growth of most medium-size cities of the regions will not per se aggravate the UHI phenomenon; in turn it will be the design of the new neighbourhoods that will impact the formation of urban heat in the province. The average day LST of provincial parks in South Holland varies depending on the land use. The analysis of the average night LST varies depending of the land use of the patches. The following surfaces are arranged from the lowest to the highest temperatures: water surfaces, forests, cropland, and greenhouse areas. For each of these land uses, NDVI, imperviousness and landscape shape index (LSI) shape index influence the thermal behaviour of the patches differently. NDVI is inversely correlated to day LST for all categories, imperviousness is correlated to day LST for all areas which do not comprise a significant presence of greenhouses (grassland and built patches) and inversely correlated to LST for areas with a high presence of greenhouses (cropland and warehouses). Greenhouse surfaces have highly reflective roofs, which contribute to the reduction of day LST. Finally, landscape shape index varies depending on the nature of the surrounding patches, especially for small patches (built areas, forests and greenhouse areas). When the patches analysed are surrounded by warmer land uses, slender and scattered patches are warmer, more compact and large ones are cooler. In turn, when they are surrounded by cooler patches it is the opposite: slenderer and scattered patches are cooler and more compact and larger ones are warmer. In Midden-Delfland (1 of the 6 South Holland provincial parks), most of the hotspots surrounding the park are adjacent to grassland patches. The measure to increase the cooling capacity of those patches would consist in a change of land use and/or an increase of NDVI of the existing grassland patches. Conclusions Satellite imagery can be used not only to analyse the heat island phenomenom in Dutch neighbourhoods, cities and regions (identify neighbourhoods with highest surface temperature, identify impact of city size and morphology in surface temperature, calcuate average surface temperature for different land uses…), but also to suggest mitigation actions for the areas assessed. Moreover, satellite imagery is here used to generate catalysing mapping typologies: game-board, rhizome, layering and drift, ensuring that the measures proposed remain accurate enough to actualy be efficient and open enough to be compatible with the rest of urban planning priorities

    On the climatic synergies at the local, regional, and global scales. The impact on the built environment.

    Full text link
    Most cities across the globe are affected by urban overheating (UO), which is one of the most well-documented local-scale climate change phenomena. Extreme heat events have become more intense and severe in the twenty-first century, posing a substantial hazard to human health. Over the years, significant variations in global weather patterns have also been documented. The UO alters the land-atmospheric interactions and affects the regional and global climatic conditions. The synergies between such local, regional, and global climate changes, which may adversely affect health, economy, energy, and environmental quality, have never been examined and are a major concern in the context of global warming and rapid urbanization. Further, the combined impact of such climatic changes on the built environment has never been investigated and is also a pressing issue in the context of overheating and GHG emissions. The dissertation’s primary goal is to examine the interactions between local-scale UO, regional-scale heatwaves, and large-scale synoptic climatology and to assess how these affect the built environment. The association between UO, heatwaves, and large-scale weather patterns was investigated using the surface energy budget and innovative techniques, including the gridded weather typing classification (GWTC). The newly developed urban building energy models (UBEMs) were employed to investigate the combined impact of such climatic changes on the built environment. There had been reports of positive synergy between UO and heatwaves when the magnitude of UO increased dramatically. The key synergistic interactions between UO and heatwaves were the advective heat flux and land-coast distance, where the lack of coastal winds penetration during heatwaves kept the inland regions warmer by altering the available energy. The tropical maritime Tasman airmass (coming from north of the Tasman sea) and temperate maritime weather patterns were primarily responsible for humid-warm (HW) and humid conditions in the region during heatwaves. In addition to these moist unstable conditions, a significant impact of tropical continental airmass, arising over central Australia, was also documented during heatwaves, another thermal regulator between inland and coastal zones. A drastic increase in urban cooling energy needs and serious overheating issues in the built environment was also concluded under the combined impact of such climate changes, which was associated with the same dualistic large-scale weather systems. This research is the first of its kind, identifying the impact of microscale and mesoscale climate on the built environment and presenting the solutions to counteracting the global climatic change. The guidelines provided in the dissertation will aid in designing thermally resilient and heat-responsive cities

    AEOLIAN SYSTEM DYNAMICS DERIVED FROM THERMAL INFRARED DATA

    Get PDF
    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a new application. Supporting data from AERONET and other orbital data enabled study of net radiative forcing

    Climate Change and Environmental Sustainability-Volume 1

    Get PDF
    Climate change has been widely recognised as a major challenge to the world, with significant environmental, economic and social consequences. Given this, addressing climate change is an urgent and profound task of society, a complex and difficult mission of several generations. To address the challenge of climate change, there is a need to develop a holistic climate change mitigation and adaptation framework that can cover as many climate-related topics as possible and connect as many stakeholders as possible across the globe. This book is an important one, bringing together key climate-related topics, including climate-induced impact assessment, environmental vulnerability and resilience assessment, greenhouse gas emission dynamics and sequestration, climate change mitigation and adaptation strategies in addition to climate-related governance. Results reported in this book are conducive to a better understanding of the climate emergency, climate-related impacts and the solutions. We expect the book to benefit decision makers, practitioners and researchers in different fields such as climate modelling and prediction, forest ecosystems, land management, urban planning and design, urban governance in addition to institutional operation. Prof. Bao-Jie He acknowledges Project NO. 2021CDJQY-004, supported by the Fundamental Research Funds for the Central Universities. We appreciate the assistance from Mr. Lifeng Xiong, Mr. Wei Wang, Ms. Xueke Chen and Ms. Anxian Chen at the School of Architecture and Urban Planning, Chongqing University, China
    • …
    corecore