22,595 research outputs found

    Mesophilic Anaerobic Co-digestion of Olive-Mill Waste With Cattle Manure: Effects of Mixture Ratio

    Get PDF
    The co-digestion of agri-food by-products and livestock manure is a feasible alternative for waste management and the recovery of biogas provides an option to generate renewable energy. A series of batch experiments were carried out in order to investigate the mesophilic anaerobic co-digestion of two-phase olive-mill waste (2POMW) and cattle manure (CM) in different mixtures (2POMW:CM = 50:50; 60:40; 75:25; 85:15). In addition, the biodegradability of the co-substrates was studied in order to analyze the performance of the co-digestion process. The results obtained in this study indicate that 2POMW has a low biodegradability since a high soluble organic matter concentration and a low accumulated methane production were obtained at the end of the corresponding biodegradability test. However, CM is more easily biodegradable in mesophilic anaerobic conditions. The co-digestion of both wastes produced an enhancement of the hydrolytic-acidogenic phase, increasing the organic matter potentially bioavailable as volatile fatty acids (VFAs) and the biogas productivity, as a consequence of the subsequent degradation of VFAs by methanogens. However, an accumulation of VFA, principally propionic acid, was observed in the reactors with higher proportions of 2POMW. The volatile solids (VS) removal increased with the 2POMW percentage of the mixture up to 75% fresh weight. The increase of 2POMW above 75% led to a decrease in total VS removal. Moreover, a decrease in methane production was observed for the 85:15 mixture, as a consequence of the high concentration of propionic acid, which is a known inhibitor of methanogenesis. The maximum cumulative methane production and methane yield were achieved in the 75:25 mixture with values of 18.70 L and 112.40 LCH4/kgVS(added), respectively. Compared with 2POMW, the co-digestion produced an increase of 264-319% in the volume of accumulated methane (L), 293-351% in the methane yield (LCH4/kgVS(added)) and 312-342% based on the VS consumed (LCH4/kgVS(removed)). These results suggest that the mixture of these agro-industrial by-products could be effective to enhance biogas production and organic matter removal from 2POMW

    Numerical model estimation of biomethane production using an anaerobic CSTR: model formulation, parameter estimation and uncertainty/sensitivity analysis

    Get PDF
    Global climate change is becoming of increasing concern. Transportation makes up a large part of carbon gasses, which affects climate change and air quality. As transportation is a big part of carbon emissions, everybody can contribute to reducing emissions through transportation. One way for people to contribute is to start choosing greener transportation. Nuding is a tool that can be used to get people to choose greener transportation. It's function is to help guide people's behavior. For this project, the nudging goal is to nudge people towards healthier and greener transportation options than already in use. An example of a nudge is to provide reminders of bus departure times for a trip to an event. In order to nudge people gathering information relevant for traveling is necessary. In this thesis, relevant information for green transportation nudges is researched. Other studies on green transportation nudges are applied to discover relevant information topics and sources. Microservices architecture is proposed as the architecture for designing nudges, where the system is divided into smaller interconnected services that work together. Demonstrators of information collection microservices are designed and implemented. The demonstrators handle data for different information topics relevant to green transportation nudges. There are demonstrators for collecting weather data, routing data, public transportation data, rental bikes and scooters data, calendar data, and location data. The thesis also discusses how the data collected can be used to form transportation nudges

    Augmenting Biogas Process Modeling by Resolving Intracellular Metabolic Activity

    Get PDF
    The process of anaerobic digestion in which waste biomass is transformed to methane by complex microbial communities has been modeled for more than 16 years by parametric gray box approaches that simplify process biology and do not resolve intracellular microbial activity. Information on such activity, however, has become available in unprecedented detail by recent experimental advances in metatranscriptomics and metaproteomics. The inclusion of such data could lead to more powerful process models of anaerobic digestion that more faithfully represent the activity of microbial communities. We augmented the Anaerobic Digestion Model No. 1 (ADM1) as the standard kinetic model of anaerobic digestion by coupling it to Flux-Balance-Analysis (FBA) models of methanogenic species. Steady-state results of coupled models are comparable to standard ADM1 simulations if the energy demand for non-growth associated maintenance (NGAM) is chosen adequately. When changing a constant feed of maize silage from continuous to pulsed feeding, the final average methane production remains very similar for both standard and coupled models, while both the initial response of the methanogenic population at the onset of pulsed feeding as well as its dynamics between pulses deviates considerably. In contrast to ADM1, the coupled models deliver predictions of up to 1,000s of intracellular metabolic fluxes per species, describing intracellular metabolic pathway activity in much higher detail. Furthermore, yield coefficients which need to be specified in ADM1 are no longer required as they are implicitly encoded in the topology of the species’ metabolic network. We show the feasibility of augmenting ADM1, an ordinary differential equation-based model for simulating biogas production, by FBA models implementing individual steps of anaerobic digestion. While cellular maintenance is introduced as a new parameter, the total number of parameters is reduced as yield coefficients no longer need to be specified. The coupled models provide detailed predictions on intracellular activity of microbial species which are compatible with experimental data on enzyme synthesis activity or abundance as obtained by metatranscriptomics or metaproteomics. By providing predictions of intracellular fluxes of individual community members, the presented approach advances the simulation of microbial community driven processes and provides a direct link to validation by state-of-the-art experimental techniques

    Cultivation and anaerobic digestion of Scenedesmus spp. grown in a pilot-scale open raceway

    No full text
    Digestibility of a micro-algal mixture was evaluated by mesophilic anaerobic digestion in continuously-stirred tank reactors. The culture consisted primarily of Scenedesmus spp. continuously cultivated over a 6-month period in a 100 m2 raceway reactor instrumented to record pH, dissolved oxygen and temperature. The raceway received supplementary carbon in the form of flue gas from a diesel boiler (10% CO2) injected into a 1-m deep sump to control pH in the range 7.8–8.0. Dilution was optimised to biomass productivity and gave values of 10–15 and 20–25 g total suspended solids (TSS) m? 2 day? 1 in winter (December–February) and spring (April–May), respectively. The culture for the anaerobic digestion trial was harvested in February by centrifugation to give an algal paste containing 4.3% volatile solids (VS). Semi-continuous digestion at organic loading rates of 2.00, 2.75 and 3.50 g VS l? 1 day? 1 gave volumetric biogas productions of ~ 0.66, ~ 0.83 and ~ 0.99 l l? 1 day? 1, respectively. Specific methane yield ranged from 0.13 to 0.14 l CH4 g? 1 VSadded with biogas methane content ~ 62%. Overall the digestion process was stable, but only ~ 30% VS destruction was achieved indicating low biodegradability, due to the short retention times and the recalcitrant nature of this type of biomas

    Food waste composting

    Get PDF
    The objective of this thesis was to increase our knowledge of issues relevant to process problems in large-scale composting. The investigations focused on acid-related process inhibition and the relationships between temperature, aeration, evaporation and the scale of the process. Three manuscripts are summarised in the thesis proper. The first investigated composting at different scales; at full-scale, in a 2 m high reactor and in a one-litre vessel. The process in the reactor resembled the full-scale process, but the theoretical calculations showed that the heat losses from the reactor were large. About 0.45 m of glass wool would be necessary to produce similar thermal properties in the reactor as in the full scale plant. Accumulation of acids was studied in the second investigation. Different amounts of active compost were used as a starting culture in rotating three-litre reactors, which were fed daily with fresh waste and water. In reactors with a large amount of starting culture, more than four times the daily feed, a well-functioning process with high temperature, high CO2 production and high pH was established. In reactors with a starting culture less than twice the daily feed, the composting process failed. The temperature was below 42 °C and the CO2 production was small. In these reactors the pH was low and organic acids accumulated. It was concluded that acid inhibition of fed-batch processes can be avoided if sufficient amounts of a good starting culture are used. In the third investigation, the combined effects of temperature and pH on the degradation were studied. Small samples of compost from the initial acidic phase were treated with sodium hydroxide to raise the pH. This resulted in high respiratory activity in samples at all pH levels at 36 °C and in those with pH over 6.5 at 46 °C. However, at 46 °C the activity was very low in samples with pH below 6.0. This shows that a combination of high temperature and low pH can inhibit the composting process. The influence of the composting temperature on the evaporation was also analysed. Simulations showed that the difference in evaporation at different temperatures was very small for the same degradation, although there were large variations in airflow. Finally, addition of water to compost is discussed. It is often necessary to add water when composting energy-rich substrates, since otherwise the process may be halted due to drying before the compost has stabilised

    Anaerobic digestion of two biodegradable municipal waste streams

    No full text
    Landfill avoidance for organic wastes is now a high priority worldwide. Two fractions of the municipal waste stream were considered with respect to their potential for diversion through controlled anaerobic digestion. The physical and chemical properties of source segregated domestic food waste (ss-FW) and of the mechanically-recovered organic fraction of municipal solid waste (mr-OFMSW) were analysed, and their methane yields determined in both batch and semi-continuous digestion. Methane potentials were compared with predicted values based on biochemical composition, elemental analysis and carbon mass balance, and the differences explained by compositional analysis of feedstocks and digestates. The ss-FW had a higher percentage biodegradability and higher energy potential on a dry weight basis due to the high proportion of proteins and fats in this waste, although the energy potential of the mr-OFMSW was slightly higher on a wet weight (WW) basis. The mr-OFMSW showed very stable digestion characteristics, whereas the ss-FW had a high digestate ammoniacal-N concentration and volatile fatty acid accumulation leading to some process instability. Digestates from semi-continuous trials with mr-OFMSW had high concentrations of potentially toxic elements (PTE) and a lower nutrient content than ss-FW digestate, making the former unsuitable for application to land used in food productio

    Compost and digestate: sustainability, benefits, impacts for the environment and for plant production

    Get PDF
    This proceedings volume contains the papers presented at the CODIS 2008 congress held on 27 - 29 February 2008 in Solothurn (Switzerland).The composting and digestion of biogenic waste materials and the subsequent application of compost and digestate to soil contributes to nutrient recycling and renewable energy production. Moreover, compost and digestate can improve soil fertility and suppress plant diseases. On the other hand, compost and digestate may also contain a variety of pollutants hazardous to soil, such as heavy metals and organic contaminants.Compost and digestate have been thoroughly investigated in the framework of two associated projects entitled Organic Pollutants in Compost and Digestate in Switzerland and Effects of Composts and Digestate on the Environment, Soil Fertility and Plant Health. These projects yielded new insights into the properties of compost and digestate, mainly with regard to biological parameters and the occurrence of both classic and emerging organic pollutants.The CODIS 2008 congress was the final event of these two projects
    • …
    corecore