11,791 research outputs found

    Conscript Your Friends into Larger Anonymity Sets with JavaScript

    Full text link
    We present the design and prototype implementation of ConScript, a framework for using JavaScript to allow casual Web users to participate in an anonymous communication system. When a Web user visits a cooperative Web site, the site serves a JavaScript application that instructs the browser to create and submit "dummy" messages into the anonymity system. Users who want to send non-dummy messages through the anonymity system use a browser plug-in to replace these dummy messages with real messages. Creating such conscripted anonymity sets can increase the anonymity set size available to users of remailer, e-voting, and verifiable shuffle-style anonymity systems. We outline ConScript's architecture, we address a number of potential attacks against ConScript, and we discuss the ethical issues related to deploying such a system. Our implementation results demonstrate the practicality of ConScript: a workstation running our ConScript prototype JavaScript client generates a dummy message for a mix-net in 81 milliseconds and it generates a dummy message for a DoS-resistant DC-net in 156 milliseconds.Comment: An abbreviated version of this paper will appear at the WPES 2013 worksho

    Seeking Anonymity in an Internet Panopticon

    Full text link
    Obtaining and maintaining anonymity on the Internet is challenging. The state of the art in deployed tools, such as Tor, uses onion routing (OR) to relay encrypted connections on a detour passing through randomly chosen relays scattered around the Internet. Unfortunately, OR is known to be vulnerable at least in principle to several classes of attacks for which no solution is known or believed to be forthcoming soon. Current approaches to anonymity also appear unable to offer accurate, principled measurement of the level or quality of anonymity a user might obtain. Toward this end, we offer a high-level view of the Dissent project, the first systematic effort to build a practical anonymity system based purely on foundations that offer measurable and formally provable anonymity properties. Dissent builds on two key pre-existing primitives - verifiable shuffles and dining cryptographers - but for the first time shows how to scale such techniques to offer measurable anonymity guarantees to thousands of participants. Further, Dissent represents the first anonymity system designed from the ground up to incorporate some systematic countermeasure for each of the major classes of known vulnerabilities in existing approaches, including global traffic analysis, active attacks, and intersection attacks. Finally, because no anonymity protocol alone can address risks such as software exploits or accidental self-identification, we introduce WiNon, an experimental operating system architecture to harden the uses of anonymity tools such as Tor and Dissent against such attacks.Comment: 8 pages, 10 figure

    How Do Tor Users Interact With Onion Services?

    Full text link
    Onion services are anonymous network services that are exposed over the Tor network. In contrast to conventional Internet services, onion services are private, generally not indexed by search engines, and use self-certifying domain names that are long and difficult for humans to read. In this paper, we study how people perceive, understand, and use onion services based on data from 17 semi-structured interviews and an online survey of 517 users. We find that users have an incomplete mental model of onion services, use these services for anonymity and have varying trust in onion services in general. Users also have difficulty discovering and tracking onion sites and authenticating them. Finally, users want technical improvements to onion services and better information on how to use them. Our findings suggest various improvements for the security and usability of Tor onion services, including ways to automatically detect phishing of onion services, more clear security indicators, and ways to manage onion domain names that are difficult to remember.Comment: Appeared in USENIX Security Symposium 201

    Compromising Tor Anonymity Exploiting P2P Information Leakage

    Get PDF
    Privacy of users in P2P networks goes far beyond their current usage and is a fundamental requirement to the adoption of P2P protocols for legal usage. In a climate of cold war between these users and anti-piracy groups, more and more users are moving to anonymizing networks in an attempt to hide their identity. However, when not designed to protect users information, a P2P protocol would leak information that may compromise the identity of its users. In this paper, we first present three attacks targeting BitTorrent users on top of Tor that reveal their real IP addresses. In a second step, we analyze the Tor usage by BitTorrent users and compare it to its usage outside of Tor. Finally, we depict the risks induced by this de-anonymization and show that users' privacy violation goes beyond BitTorrent traffic and contaminates other protocols such as HTTP

    Blindspot: Indistinguishable Anonymous Communications

    Get PDF
    Communication anonymity is a key requirement for individuals under targeted surveillance. Practical anonymous communications also require indistinguishability - an adversary should be unable to distinguish between anonymised and non-anonymised traffic for a given user. We propose Blindspot, a design for high-latency anonymous communications that offers indistinguishability and unobservability under a (qualified) global active adversary. Blindspot creates anonymous routes between sender-receiver pairs by subliminally encoding messages within the pre-existing communication behaviour of users within a social network. Specifically, the organic image sharing behaviour of users. Thus channel bandwidth depends on the intensity of image sharing behaviour of users along a route. A major challenge we successfully overcome is that routing must be accomplished in the face of significant restrictions - channel bandwidth is stochastic. We show that conventional social network routing strategies do not work. To solve this problem, we propose a novel routing algorithm. We evaluate Blindspot using a real-world dataset. We find that it delivers reasonable results for applications requiring low-volume unobservable communication.Comment: 13 Page

    Privacy Preserving Internet Browsers: Forensic Analysis of Browzar

    Full text link
    With the advance of technology, Criminal Justice agencies are being confronted with an increased need to investigate crimes perpetuated partially or entirely over the Internet. These types of crime are known as cybercrimes. In order to conceal illegal online activity, criminals often use private browsing features or browsers designed to provide total browsing privacy. The use of private browsing is a common challenge faced in for example child exploitation investigations, which usually originate on the Internet. Although private browsing features are not designed specifically for criminal activity, they have become a valuable tool for criminals looking to conceal their online activity. As such, Technological Crime units often focus their forensic analysis on thoroughly examining the web history on a computer. Private browsing features and browsers often require a more in-depth, post mortem analysis. This often requires the use of multiple tools, as well as different forensic approaches to uncover incriminating evidence. This evidence may be required in a court of law, where analysts are often challenged both on their findings and on the tools and approaches used to recover evidence. However, there are very few research on evaluating of private browsing in terms of privacy preserving as well as forensic acquisition and analysis of privacy preserving internet browsers. Therefore in this chapter, we firstly review the private mode of popular internet browsers. Next, we describe the forensic acquisition and analysis of Browzar, a privacy preserving internet browser and compare it with other popular internet browser
    • …
    corecore