8 research outputs found

    Power efficient adaptive mitigation of local interference in multimode wireless transceivers

    Get PDF

    Adaptive nonlinear interference suppressor for cognitive radio applications

    Get PDF
    To utilize the radio frequency spectrum efficiently a Cognitive Radio (CR) can operate as a secondary user in a frequency band which is licensed to a primary user. To this end, the CR must sense the spectrum continuously to find empty frequency channels for its transmission. The transmitted signal by the local transmitter of the CR, however, induces a strong local interference in the local receiver of the CR. Hence a half-duplex transceiver is used where the transmit and sense operations are done in separate time slots. The time-slotted operation though, reduces the throughput of the CR. This paper proposes application of an adaptive Nonlinear Interference Suppressor (NIS) to suppress this strong local interference to enable simultaneous transmit and sense. We present experimental results of a transceiver testbed that uses an implementation of the NIS, fabricated in 140 nm CMOS technology. These experiments show that the NIS can substantially suppress the local interference with low complexity and power consumption

    Interference Suppression Techniques for RF Receivers

    Get PDF

    Nonlinear Distortion in Wideband Radio Receivers and Analog-to-Digital Converters: Modeling and Digital Suppression

    Get PDF
    Emerging wireless communications systems aim to flexible and efficient usage of radio spectrum in order to increase data rates. The ultimate goal in this field is a cognitive radio. It employs spectrum sensing in order to locate spatially and temporally vacant spectrum chunks that can be used for communications. In order to achieve that, flexible and reconfigurable transceivers are needed. A software-defined radio can provide these features by having a highly-integrated wideband transceiver with minimum analog components and mostly relying on digital signal processing. This is also desired from size, cost, and power consumption point of view. However, several challenges arise, from which dynamic range is one of the most important. This is especially true on receiver side where several signals can be received simultaneously through a single receiver chain. In extreme cases the weakest signal can be almost 100 dB weaker than the strongest one. Due to the limited dynamic range of the receiver, the strongest signals may cause nonlinear distortion which deteriorates spectrum sensing capabilities and also reception of the weakest signals. The nonlinearities are stemming from the analog receiver components and also from analog-to-digital converters (ADCs). This is a performance bottleneck in many wideband communications and also radar receivers. The dynamic range challenges are already encountered in current devices, such as in wideband multi-operator receiver scenarios in mobile networks, and the challenges will have even more essential role in the future.This thesis focuses on aforementioned receiver scenarios and contributes to modeling and digital suppression of nonlinear distortion. A behavioral model for direct-conversion receiver nonlinearities is derived and it jointly takes into account RF, mixer, and baseband nonlinearities together with I/Q imbalance. The model is then exploited in suppression of receiver nonlinearities. The considered method is based on adaptive digital post-processing and does not require any analog hardware modification. It is able to extract all the necessary information directly from the received waveform in order to suppress the nonlinear distortion caused by the strongest blocker signals inside the reception band.In addition, the nonlinearities of ADCs are considered. Even if the dynamic range of the analog receiver components is not limiting the performance, ADCs may cause considerable amount of nonlinear distortion. It can originate, e.g., from undeliberate variations of quantization levels. Furthermore, the received waveform may exceed the nominal voltage range of the ADC due to signal power variations. This causes unintentional signal clipping which creates severe nonlinear distortion. In this thesis, a Fourier series based model is derived for the signal clipping caused by ADCs. Furthermore, four different methods are considered for suppressing ADC nonlinearities, especially unintentional signal clipping. The methods exploit polynomial modeling, interpolation, or symbol decisions for suppressing the distortion. The common factor is that all the methods are based on digital post-processing and are able to continuously adapt to variations in the received waveform and in the receiver itself. This is a very important aspect in wideband receivers, especially in cognitive radios, when the flexibility and state-of-the-art performance is required

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    Analysis of an adaptive nonlinear interference suppressor for wireless multimode transceivers

    No full text
    In multimode transceivers, the transmitter for one communication standard may induce a large interference in the receiver for another standard, often exceeding the desired signal by many tens of dBs. To linearly suppress this interference, the receiver requires a very large linear dynamic range, resulting in excessive power consumption. In a recent paper a nonlinear block, which requires an adaptation signal proportional to the envelope of the received interference, is used to strongly suppress the interference. In that work, the required adaptation signal for the nonlinear block is determined analytically. In this paper we quantify the required accuracy for the adaptation signal to properly suppress the interference while keeping the degradation to the receiver symbol error rate (SER) negligible. To provide the required accuracy, we propose a closed-loop method that calculates the adaptation signal based on a model, which describes the received interference in terms of the locally available baseband interference. We propose a method to adapt this model during the operation of the transceiver such that the power of the residual interference at the output of the nonlinear block is minimized. Our analysis shows that the proposed method can strongly suppress the interference while a SER close to that of an exactly linear receiver is achieved. Simulation results for a practical scenario validate this analysis
    corecore