77 research outputs found

    Single-cell RNA sequencing for subtype discovery in Plasmodium falciparum and mammalian cells

    Get PDF
    Since the dawn of massively parallel sequencing technologies in mid-2000s their utility in profiling the expression of genes in a genome-wide fashion has matured and progressed from cell populations to individual cells. In particular, single-cell RNA sequencing (scRNA-seq) has impacted numerous domains in life sciences and hold immense promise in biology and medicine. Indeed, it has become realistic to chart the complete set of cell types and states in multicellular organisms, and projects have started to map out cell types in humans (i.e. the Human Cell Atlas project) and model organsims. In this thesis, I present the application of scRNA-seq to infectious disease and cancer as well as a computational assessment of the general possibilities and limitations of scRNA-seq for enumerating cell types and states de novo. In Paper I, we describe the ability of scRNA-seq to profile transcriptomes from individual malaria-causing P. falciparum parasites. We reveal heterogeneity even among synchronized cultures of parasites during their red blood cell life cycle. Moreover, we identify a subset of sexually differentiated P. falciparum with a distinct gene signature, likely important for parasite transmission that may be exploited for the design of transmission- blocking drugs and/or vaccines. In Paper II, I present a computational strategy to identify the magnitude of biological gene expression differences needed for accurate inference of cell identities using scRNA-seq. Interestingly, rather large differences are needed for proper cell state discrimination, irrespective of scRNA-seq protocol, implying that large number of cell states may escape detection. In Paper III, we used scRNA-seq and bulk RNA-seq to characterize the molecular programs during the later stages of lung metastasis. We demonstrate that a transition from epithelial to mesenchymal cell characteristics occurs in cancer cells during metastasis, and that the mesenchymal properties are maintained during metastasis growth extending over a week. In Paper IV we performed transcriptome analyses on stem and progenitor populations in myelodysplastic syndrome (MDS) patients. We provide evidence that the MDS stem cells and the progenitors have distinct transcriptome. Altogether, this thesis expands the applications of scRNA-seq towards parasite biology and cancer metastasis and we provide valuable insights into the abilities of current scRNA-seq technologies in mapping cell states in an unbiased fashion

    DNA methylation analysis of the evolution of Wilms tumour from its precursor nephrogenic rests

    Get PDF
    Recurrent loss of imprinting at 11p15, paucity of recurrent genetic mutations and associated nephrogenic rests (NR; precursor lesions that resemble embryonic kidney (EK)) implicate aberrant DNA methylation in tumourigenesis of paediatric Wilms tumour (WT) and predict that interrogation of the methylome, rather than the genome, is more likely to reveal tumour-specific biomarkers To test if aberrant DNA methylation is implicated in tumourigenesis, methylome analysis was performed on 36 normal kidney (NK), 22 NR, 36 WT and 4 EK, including 20 matched trios and 34 matched NK-WT pairs, using Illumina 450k arrays. Findings were validated with bisulfite-sequencing and RNA sequencing. This thesis describes the successful identification of changes in methylation that distinguish between tissue types. Through analysis of DNA methylation, NR formation was associated with gain of methylation at developmental loci related to Polycomb target binding sites. Evolution to WT was associated with increase in methylation variability in a subset of WTs (group-1), which also showed common changes in methylation in comparison to their associated NR, including silencing of novel tumour suppressor genes. Group-1 WTs were significantly enriched for bilateral cases whereas those in group-2 showed no differences in methylation compared to their associated NR. Comparison between NK and WT identified three DMRs of genome-wide significance (P<5x10-8) for use as tumour-specific biomarkers. As proof of principle for clinical utility, DMR-2 was successfully used in a case study to monitor tumour burden during treatment in cell-free serum DNA. This thesis concludes that methylation levels vary during WT evolution. As group-1 WT included all bilateral cases, our data suggests that methylation analysis could aid treatment planning in bilateral disease and that some WT may be candidates for epigenetic-modifier therapy. These findings define the first cell-free epigenetic biomarker for WT with potential for clinical utility

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF
    Primary liver cancer, consisting primarily of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a heterogeneous malignancy with a dismal prognosis, resulting in the third leading cause of cancer mortality worldwide [1, 2]. It is characterized by unique histological features, late-stage diagnosis, a highly variable mutational landscape, and high levels of heterogeneity in biology and etiology [3-5]. Treatment options are limited, with surgical intervention the main curative option, although not available for the majority of patients which are diagnosed in an advanced stage. Major contributing factors to the complexity and limited treatment options are the interactions between primary tumor cells, non-neoplastic stromal and immune cells, and the extracellular matrix (ECM). ECM dysregulation plays a prominent role in multiple facets of liver cancer, including initiation and progression [6, 7]. HCC often develops in already damaged environments containing large areas of inflammation and fibrosis, while CCA is commonly characterized by significant desmoplasia, extensive formation of connective tissue surrounding the tumor [8, 9]. Thus, to gain a better understanding of liver cancer biology, sophisticated in vitro tumor models need to incorporate comprehensively the various aspects that together dictate liver cancer progression. Therefore, the aim of this thesis is to create in vitro liver cancer models through organoid technology approaches, allowing for novel insights into liver cancer biology and, in turn, providing potential avenues for therapeutic testing. To model primary epithelial liver cancer cells, organoid technology is employed in part I. To study and characterize the role of ECM in liver cancer, decellularization of tumor tissue, adjacent liver tissue, and distant metastatic organs (i.e. lung and lymph node) is described, characterized, and combined with organoid technology to create improved tissue engineered models for liver cancer in part II of this thesis. Chapter 1 provides a brief introduction into the concepts of liver cancer, cellular heterogeneity, decellularization and organoid technology. It also explains the rationale behind the work presented in this thesis. In-depth analysis of organoid technology and contrasting it to different in vitro cell culture systems employed for liver cancer modeling is done in chapter 2. Reliable establishment of liver cancer organoids is crucial for advancing translational applications of organoids, such as personalized medicine. Therefore, as described in chapter 3, a multi-center analysis was performed on establishment of liver cancer organoids. This revealed a global establishment efficiency rate of 28.2% (19.3% for hepatocellular carcinoma organoids (HCCO) and 36% for cholangiocarcinoma organoids (CCAO)). Additionally, potential solutions and future perspectives for increasing establishment are provided. Liver cancer organoids consist of solely primary epithelial tumor cells. To engineer an in vitro tumor model with the possibility of immunotherapy testing, CCAO were combined with immune cells in chapter 4. Co-culture of CCAO with peripheral blood mononuclear cells and/or allogenic T cells revealed an effective anti-tumor immune response, with distinct interpatient heterogeneity. These cytotoxic effects were mediated by cell-cell contact and release of soluble factors, albeit indirect killing through soluble factors was only observed in one organoid line. Thus, this model provided a first step towards developing immunotherapy for CCA on an individual patient level. Personalized medicine success is dependent on an organoids ability to recapitulate patient tissue faithfully. Therefore, in chapter 5 a novel organoid system was created in which branching morphogenesis was induced in cholangiocyte and CCA organoids. Branching cholangiocyte organoids self-organized into tubular structures, with high similarity to primary cholangiocytes, based on single-cell sequencing and functionality. Similarly, branching CCAO obtain a different morphology in vitro more similar to primary tumors. Moreover, these branching CCAO have a higher correlation to the transcriptomic profile of patient-paired tumor tissue and an increased drug resistance to gemcitabine and cisplatin, the standard chemotherapy regimen for CCA patients in the clinic. As discussed, CCAO represent the epithelial compartment of CCA. Proliferation, invasion, and metastasis of epithelial tumor cells is highly influenced by the interaction with their cellular and extracellular environment. The remodeling of various properties of the extracellular matrix (ECM), including stiffness, composition, alignment, and integrity, influences tumor progression. In chapter 6 the alterations of the ECM in solid tumors and the translational impact of our increased understanding of these alterations is discussed. The success of ECM-related cancer therapy development requires an intimate understanding of the malignancy-induced changes to the ECM. This principle was applied to liver cancer in chapter 7, whereby through a integrative molecular and mechanical approach the dysregulation of liver cancer ECM was characterized. An optimized agitation-based decellularization protocol was established for primary liver cancer (HCC and CCA) and paired adjacent tissue (HCC-ADJ and CCA-ADJ). Novel malignancy-related ECM protein signatures were found, which were previously overlooked in liver cancer transcriptomic data. Additionally, the mechanical characteristics were probed, which revealed divergent macro- and micro-scale mechanical properties and a higher alignment of collagen in CCA. This study provided a better understanding of ECM alterations during liver cancer as well as a potential scaffold for culture of organoids. This was applied to CCA in chapter 8 by combining decellularized CCA tumor ECM and tumor-free liver ECM with CCAO to study cell-matrix interactions. Culture of CCAO in tumor ECM resulted in a transcriptome closely resembling in vivo patient tumor tissue, and was accompanied by an increase in chemo resistance. In tumor-free liver ECM, devoid of desmoplasia, CCAO initiated a desmoplastic reaction through increased collagen production. If desmoplasia was already present, distinct ECM proteins were produced by the organoids. These were tumor-related proteins associated with poor patient survival. To extend this method of studying cell-matrix interactions to a metastatic setting, lung and lymph node tissue was decellularized and recellularized with CCAO in chapter 9, as these are common locations of metastasis in CCA. Decellularization resulted in removal of cells while preserving ECM structure and protein composition, linked to tissue-specific functioning hallmarks. Recellularization revealed that lung and lymph node ECM induced different gene expression profiles in the organoids, related to cancer stem cell phenotype, cell-ECM integrin binding, and epithelial-to-mesenchymal transition. Furthermore, the metabolic activity of CCAO in lung and lymph node was significantly influenced by the metastatic location, the original characteristics of the patient tumor, and the donor of the target organ. The previously described in vitro tumor models utilized decellularized scaffolds with native structure. Decellularized ECM can also be used for creation of tissue-specific hydrogels through digestion and gelation procedures. These hydrogels were created from both porcine and human livers in chapter 10. The liver ECM-based hydrogels were used to initiate and culture healthy cholangiocyte organoids, which maintained cholangiocyte marker expression, thus providing an alternative for initiation of organoids in BME. Building upon this, in chapter 11 human liver ECM-based extracts were used in combination with a one-step microfluidic encapsulation method to produce size standardized CCAO. The established system can facilitate the reduction of size variability conventionally seen in organoid culture by providing uniform scaffolding. Encapsulated CCAO retained their stem cell phenotype and were amendable to drug screening, showing the feasibility of scalable production of CCAO for throughput drug screening approaches. Lastly, Chapter 12 provides a global discussion and future outlook on tumor tissue engineering strategies for liver cancer, using organoid technology and decellularization. Combining multiple aspects of liver cancer, both cellular and extracellular, with tissue engineering strategies provides advanced tumor models that can delineate fundamental mechanistic insights as well as provide a platform for drug screening approaches.<br/
    • …
    corecore