6,598 research outputs found

    Graph-theoretic Approach To Modeling Propagation And Control Of Network Worms

    Get PDF
    In today\u27s network-dependent society, cyber attacks with network worms have become the predominant threat to confidentiality, integrity, and availability of network computing resources. Despite ongoing research efforts, there is still no comprehensive network-security solution aimed at controling large-scale worm propagation. The aim of this work is fivefold: (1) Developing an accurate combinatorial model of worm propagation that can facilitate the analysis of worm control strategies, (2) Building an accurate epidemiological model for the propagation of a worm employing local strategies, (3) Devising distributed architecture and algorithms for detection of worm scanning activities, (4) Designing effective control strategies against the worm, and (5) Simulation of the developed models and strategies on large, scale-free graphs representing real-world communication networks. The proposed pair-approximation model uses the information about the network structure--order, size, degree distribution, and transitivity. The empirical study of propagation on large scale-free graphs is in agreement with the theoretical analysis of the proposed pair-approximation model. We, then, describe a natural generalization of the classical cops-and-robbers game--a combinatorial model of worm propagation and control. With the help of this game on graphs, we show that the problem of containing the worm is NP-hard. Six novel near-optimal control strategies are devised: combination of static and dynamic immunization, reactive dynamic and invariant dynamic immunization, soft quarantining, predictive traffic-blocking, and contact-tracing. The analysis of the predictive dynamic traffic-blocking, employing only local information, shows that the worm can be contained so that 40\% of the network nodes are not affected. Finally, we develop the Detection via Distributed Blackholes architecture and algorithm which reflect the propagation strategy used by the worm and the salient properties of the network. Our distributed detection algorithm can detect the worm scanning activity when only 1.5% of the network has been affected by the propagation. The proposed models and algorithms are analyzed with an individual-based simulation of worm propagation on realistic scale-free topologies

    A Pseudo-Worm Daemon (PWD) for empirical analysis of zero-day network worms and countermeasure testing

    Get PDF
    The cyber epidemiological analysis of computer worms has emerged a key area of research in the field of cyber security. In order to understand the epidemiology of computer worms; a network daemon is required to empirically observe their infection and propagation behavior. The same facility can also be employed in testing candidate worm countermeasures. In this paper, we present the architecture and design of Pseudo-Worm Daemon; termed (PWD), which is designed to perform true random scanning and hit-list worm like functionality. The PWD is implemented as a proof-of-concept in C programming language. The PWD is platform independent and can be deployed on any host in an enterprise network. The novelty of this worm daemon includes; its UDP based propagation, a user-configurable random scanning pool, ability to contain a user defined hit-list, authentication before infecting susceptible hosts and efficient logging of time of infection. Furthermore, this paper presents experimentation and analysis of a Pseudo-Witty worm by employing the PWD with real Witty worm outbreak attributes. The results obtained by Pseudo-Witty worm outbreak are quite comparable to real Witty worm outbreak; which are further quantified by using the Susceptible Infected (SI) model

    DDoS-Capable IoT Malwares: comparative analysis and Mirai Investigation

    Get PDF
    The Internet of Things (IoT) revolution has not only carried the astonishing promise to interconnect a whole generation of traditionally “dumb” devices, but also brought to the Internet the menace of billions of badly protected and easily hackable objects. Not surprisingly, this sudden flooding of fresh and insecure devices fueled older threats, such as Distributed Denial of Service (DDoS) attacks. In this paper, we first propose an updated and comprehensive taxonomy of DDoS attacks, together with a number of examples on how this classification maps to real-world attacks. Then, we outline the current situation of DDoS-enabled malwares in IoT networks, highlighting how recent data support our concerns about the growing in popularity of these malwares. Finally, we give a detailed analysis of the general framework and the operating principles of Mirai, the most disruptive DDoS-capable IoT malware seen so far

    Hybrid Epidemics - A Case Study on Computer Worm Conficker

    Full text link
    Conficker is a computer worm that erupted on the Internet in 2008. It is unique in combining three different spreading strategies: local probing, neighbourhood probing, and global probing. We propose a mathematical model that combines three modes of spreading, local, neighbourhood and global to capture the worm's spreading behaviour. The parameters of the model are inferred directly from network data obtained during the first day of the Conifcker epidemic. The model is then used to explore the trade-off between spreading modes in determining the worm's effectiveness. Our results show that the Conficker epidemic is an example of a critically hybrid epidemic, in which the different modes of spreading in isolation do not lead to successful epidemics. Such hybrid spreading strategies may be used beneficially to provide the most effective strategies for promulgating information across a large population. When used maliciously, however, they can present a dangerous challenge to current internet security protocols
    • …
    corecore