26,358 research outputs found

    Evolving Non-Dominated Parameter Sets for Computational Models from Multiple Experiments

    Get PDF
    © Peter C. R. Lane, Fernand Gobet. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY-NC 3.0)Creating robust, reproducible and optimal computational models is a key challenge for theorists in many sciences. Psychology and cognitive science face particular challenges as large amounts of data are collected and many models are not amenable to analytical techniques for calculating parameter sets. Particular problems are to locate the full range of acceptable model parameters for a given dataset, and to confirm the consistency of model parameters across different datasets. Resolving these problems will provide a better understanding of the behaviour of computational models, and so support the development of general and robust models. In this article, we address these problems using evolutionary algorithms to develop parameters for computational models against multiple sets of experimental data; in particular, we propose the ‘speciated non-dominated sorting genetic algorithm’ for evolving models in several theories. We discuss the problem of developing a model of categorisation using twenty-nine sets of data and models drawn from four different theories. We find that the evolutionary algorithms generate high quality models, adapted to provide a good fit to all available data.Peer reviewedFinal Published versio

    Constructive Heuristics for the Minimum Labelling Spanning Tree Problem: a preliminary comparison

    Get PDF
    This report studies constructive heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree that uses edges that are as similar as possible. Given an undirected labeled connected graph (i.e., with a label or color for each edge), the minimum labeling spanning tree problem seeks a spanning tree whose edges have the smallest possible number of distinct labels. The model can represent many real-world problems in telecommunication networks, electric networks, and multimodal transportation networks, among others, and the problem has been shown to be NP-complete even for complete graphs. A primary heuristic, named the maximum vertex covering algorithm has been proposed. Several versions of this constructive heuristic have been proposed to improve its efficiency. Here we describe the problem, review the literature and compare some variants of this algorithm

    Multi-criteria Evolution of Neural Network Topologies: Balancing Experience and Performance in Autonomous Systems

    Full text link
    Majority of Artificial Neural Network (ANN) implementations in autonomous systems use a fixed/user-prescribed network topology, leading to sub-optimal performance and low portability. The existing neuro-evolution of augmenting topology or NEAT paradigm offers a powerful alternative by allowing the network topology and the connection weights to be simultaneously optimized through an evolutionary process. However, most NEAT implementations allow the consideration of only a single objective. There also persists the question of how to tractably introduce topological diversification that mitigates overfitting to training scenarios. To address these gaps, this paper develops a multi-objective neuro-evolution algorithm. While adopting the basic elements of NEAT, important modifications are made to the selection, speciation, and mutation processes. With the backdrop of small-robot path-planning applications, an experience-gain criterion is derived to encapsulate the amount of diverse local environment encountered by the system. This criterion facilitates the evolution of genes that support exploration, thereby seeking to generalize from a smaller set of mission scenarios than possible with performance maximization alone. The effectiveness of the single-objective (optimizing performance) and the multi-objective (optimizing performance and experience-gain) neuro-evolution approaches are evaluated on two different small-robot cases, with ANNs obtained by the multi-objective optimization observed to provide superior performance in unseen scenarios

    Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System

    Get PDF
    This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.Fil: Méndez Babey, Måximo. Universidad de Las Palmas de Gran Canaria; EspañaFil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemåtica Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemåtica. Instituto de Matemåtica Bahía Blanca; ArgentinaFil: Gonzålez, Begoña. Universidad de Las Palmas de Gran Canaria; EspañaFil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentin

    The Quest for Optimal Sorting Networks: Efficient Generation of Two-Layer Prefixes

    Full text link
    Previous work identifying depth-optimal nn-channel sorting networks for 9≀n≀169\leq n \leq 16 is based on exploiting symmetries of the first two layers. However, the naive generate-and-test approach typically applied does not scale. This paper revisits the problem of generating two-layer prefixes modulo symmetries. An improved notion of symmetry is provided and a novel technique based on regular languages and graph isomorphism is shown to generate the set of non-symmetric representations. An empirical evaluation demonstrates that the new method outperforms the generate-and-test approach by orders of magnitude and easily scales until n=40n=40

    Evolving Gene Regulatory Networks with Mobile DNA Mechanisms

    Full text link
    This paper uses a recently presented abstract, tuneable Boolean regulatory network model extended to consider aspects of mobile DNA, such as transposons. The significant role of mobile DNA in the evolution of natural systems is becoming increasingly clear. This paper shows how dynamically controlling network node connectivity and function via transposon-inspired mechanisms can be selected for in computational intelligence tasks to give improved performance. The designs of dynamical networks intended for implementation within the slime mould Physarum polycephalum and for the distributed control of a smart surface are considered.Comment: 7 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:1303.722

    Stepping Stones to Inductive Synthesis of Low-Level Looping Programs

    Full text link
    Inductive program synthesis, from input/output examples, can provide an opportunity to automatically create programs from scratch without presupposing the algorithmic form of the solution. For induction of general programs with loops (as opposed to loop-free programs, or synthesis for domain-specific languages), the state of the art is at the level of introductory programming assignments. Most problems that require algorithmic subtlety, such as fast sorting, have remained out of reach without the benefit of significant problem-specific background knowledge. A key challenge is to identify cues that are available to guide search towards correct looping programs. We present MAKESPEARE, a simple delayed-acceptance hillclimbing method that synthesizes low-level looping programs from input/output examples. During search, delayed acceptance bypasses small gains to identify significantly-improved stepping stone programs that tend to generalize and enable further progress. The method performs well on a set of established benchmarks, and succeeds on the previously unsolved "Collatz Numbers" program synthesis problem. Additional benchmarks include the problem of rapidly sorting integer arrays, in which we observe the emergence of comb sort (a Shell sort variant that is empirically fast). MAKESPEARE has also synthesized a record-setting program on one of the puzzles from the TIS-100 assembly language programming game.Comment: AAAI 201
    • 

    corecore