8,103 research outputs found

    Global dynamics of a harmonically excited oscillator with a play : Numerical studies

    Get PDF
    This work was supported by the National Secretariat of Science, Technology and Innovation of Ecuador (SENESCYT); the Escuela Superior Politécnica del Litoral of Ecuador (ESPOL); the National Natural Science Foundation of China (11272268, 11572263) and Scholarship of China. A.S.E. Chong and Y. Yue acknowledge the hospitality of the Centre of Applied Dynamics Research at the University of Aberdeen.Peer reviewedPostprin

    Two-parameter nonsmooth grazing bifurcations of limit cycles: classification and open problems

    Get PDF
    This paper proposes a strategy for the classification of codimension-two grazing bifurcations of limit cycles in piecewise smooth systems of ordinary differential equations. Such nonsmooth transitions (C-bifurcations) occur when the cycle interacts with a discontinuity boundary of phase space in a non-generic way. Several such codimension-one events have recently been identified, causing for example period-adding or sudden onset of chaos. Here, the focus is on codimension-two grazings that are local in the sense that the dynamics can be fully described by an appropriate Poincaré map from a neighbourhood of the grazing point (or points) of the critical cycle to itself. It is proposed that codimension-two grazing bifurcations can be divided into three distinct types: either the grazing point is degenerate, or the the grazing cycle is itself degenerate (e.g. non-hyperbolic) or we have the simultaneous occurrence of two grazing events. A careful distinction is drawn between their occurrence in systems with discontinuous states, discontinuous vector fields, or that have discontinuity in some derivative of the vector field. Examples of each kind of bifurcation are presented, mostly derived from mechanical applications. For each example, where possible, principal bifurcation curves characteristic to the codimension-two scenario are presented and general features of the dynamics discussed. Many avenues for future research are opened.

    A delay differential model of ENSO variability: Parametric instability and the distribution of extremes

    Get PDF
    We consider a delay differential equation (DDE) model for El-Nino Southern Oscillation (ENSO) variability. The model combines two key mechanisms that participate in ENSO dynamics: delayed negative feedback and seasonal forcing. We perform stability analyses of the model in the three-dimensional space of its physically relevant parameters. Our results illustrate the role of these three parameters: strength of seasonal forcing bb, atmosphere-ocean coupling κ\kappa, and propagation period τ\tau of oceanic waves across the Tropical Pacific. Two regimes of variability, stable and unstable, are separated by a sharp neutral curve in the (b,τ)(b,\tau) plane at constant κ\kappa. The detailed structure of the neutral curve becomes very irregular and possibly fractal, while individual trajectories within the unstable region become highly complex and possibly chaotic, as the atmosphere-ocean coupling κ\kappa increases. In the unstable regime, spontaneous transitions occur in the mean ``temperature'' ({\it i.e.}, thermocline depth), period, and extreme annual values, for purely periodic, seasonal forcing. The model reproduces the Devil's bleachers characterizing other ENSO models, such as nonlinear, coupled systems of partial differential equations; some of the features of this behavior have been documented in general circulation models, as well as in observations. We expect, therefore, similar behavior in much more detailed and realistic models, where it is harder to describe its causes as completely.Comment: 22 pages, 9 figure

    Synchronization of electrically coupled resonate-and-fire neurons

    Full text link
    Electrical coupling between neurons is broadly present across brain areas and is typically assumed to synchronize network activity. However, intrinsic properties of the coupled cells can complicate this simple picture. Many cell types with strong electrical coupling have been shown to exhibit resonant properties, and the subthreshold fluctuations arising from resonance are transmitted through electrical synapses in addition to action potentials. Using the theory of weakly coupled oscillators, we explore the effect of both subthreshold and spike-mediated coupling on synchrony in small networks of electrically coupled resonate-and-fire neurons, a hybrid neuron model with linear subthreshold dynamics and discrete post-spike reset. We calculate the phase response curve using an extension of the adjoint method that accounts for the discontinuity in the dynamics. We find that both spikes and resonant subthreshold fluctuations can jointly promote synchronization. The subthreshold contribution is strongest when the voltage exhibits a significant post-spike elevation in voltage, or plateau. Additionally, we show that the geometry of trajectories approaching the spiking threshold causes a "reset-induced shear" effect that can oppose synchrony in the presence of network asymmetry, despite having no effect on the phase-locking of symmetrically coupled pairs

    Non-Smooth Spatio-Temporal Coordinates in Nonlinear Dynamics

    Full text link
    This paper presents an overview of physical ideas and mathematical methods for implementing non-smooth and discontinuous substitutions in dynamical systems. General purpose of such substitutions is to bring the differential equations of motion to the form, which is convenient for further use of analytical and numerical methods of analyses. Three different types of nonsmooth transformations are discussed as follows: positional coordinate transformation, state variables transformation, and temporal transformations. Illustrating examples are provided.Comment: 15 figure
    corecore