2,308 research outputs found

    Reaction Null Space of a multibody system with applications in robotics

    Get PDF
    This paper provides an overview of implementation examples based on the Reaction Null Space formalism, developed initially to tackle the problem of satellite-base disturbance of a free-floating space robot, when the robot arm is activated. The method has been applied throughout the years to other unfixed-base systems, e.g. flexible-base and macro/mini robot systems, as well as to the balance control problem of humanoid robots. The paper also includes most recent results about complete dynamical decoupling of the end-link of a fixed-base robot, wherein the end-link is regarded as the unfixed-base. This interpretation is shown to be useful with regard to motion/force control scenarios. Respective implementation results are provided

    Representation and control of coordinated-motion tasks for human-robot systems

    Get PDF
    It is challenging for robots to perform various tasks in a human environment. This is because many human-centered tasks require coordination in both hands and may often involve cooperation with another human. Although human-centered tasks require different types of coordinated movements, most of the existing methodologies have focused only on specific types of coordination. This thesis aims at the description and control of coordinated-motion tasks for human-robot systems; i.e., humanoid robots as well as multi-robot and human-robot systems. First, for bimanually coordinated-motion tasks in dual-manipulator systems, we propose the Extended-Cooperative-Task-Space (ECTS) representation, which extends the existing Cooperative-Task-Space (CTS) representation based on the kinematic models for human bimanual movements in Biomechanics. The proposed ECTS representation can represent the whole spectrum of dual-arm motion/force coordination using two sets of ECTS motion/force variables in a unified manner. The type of coordination can be easily chosen by two meaningful coefficients, and during coordinated-motion tasks, each set of variables directly describes two different aspects of coordinated motion and force behaviors. Thus, the operator can specify coordinated-motion/force tasks more intuitively in high-level descriptions, and the specified tasks can be easily reused in other situations with greater flexibility. Moreover, we present consistent procedures of using the ECTS representation for task specifications in the upper-body and lower-body subsystems of humanoid robots in order to perform manipulation and locomotion tasks, respectively. Besides, we propose and discuss performance indices derived based on the ECTS representation, which can be used to evaluate and optimize the performance of any type of dual-arm manipulation tasks. We show that using the ECTS representation for specifying both dual-arm manipulation and biped locomotion tasks can greatly simplify the motion planning process, allowing the operator to focus on high-level descriptions of those tasks. Both upper-body and lower-body task specifications are demonstrated by specifying whole-body task examples on a Hubo II+ robot carrying out dual-arm manipulation as well as biped locomotion tasks in a simulation environment. We also present the results from experiments on a dual-arm robot (Baxter) for teleoperating various types of coordinated-motion tasks using a single 6D mouse interface. The specified upper- and lower-body tasks can be considered as coordinated motions with constraints. In order to express various constraints imposed across the whole-body, we discuss the modeling of whole-body structure and the computations for robotic systems having multiple kinematic chains. Then we present a whole-body controller formulated as a quadratic programming, which can take different types of constraints into account in a prioritized manner. We validate the whole-body controller based on the simulation results on a Hubo II+ robot performing specified whole-body task examples with a number of motion and force constraints as well as actuation limits. Lastly, we discuss an extension of the ECTS representation, called Hierarchical Extended-Cooperative-Task Space (H-ECTS) framework, which uses tree-structured graphical representations for coordinated-motion tasks of multi-robot and human-robot systems. The H-ECTS framework is validated by experimental results on two Baxter robots cooperating with each other as well as with an additional human partner

    Predictive Context-Based Adaptive Compliance for Interaction Control of Robot Manipulators

    Get PDF
    In classical industrial robotics, robots are concealed within structured and well-known environments performing highly-repetitive tasks. In contrast, current robotic applications require more direct interaction with humans, cooperating with them to achieve a common task and entering home scenarios. Above all, robots are leaving the world of certainty to work in dynamically-changing and unstructured environments that might be partially or completely unknown to them. In such environments, controlling the interaction forces that appear when a robot contacts a certain environment (be the environment an object or a person) is of utmost importance. Common sense suggests the need to leave the stiff industrial robots and move towards compliant and adaptive robot manipulators that resemble the properties of their biological counterpart, the human arm. This thesis focuses on creating a higher level of intelligence for active compliance control methods applied to robot manipulators. This work thus proposes an architecture for compliance regulation named Predictive Context-Based Adaptive Compliance (PCAC) which is composed of three main components operating around a 'classical' impedance controller. Inspired by biological systems, the highest-level component is a Bayesian-based context predictor that allows the robot to pre-regulate the arm compliance based on predictions about the context the robot is placed in. The robot can use the information obtained while contacting the environment to update its context predictions and, in case it is necessary, to correct in real time for wrongly predicted contexts. Thus, the predictions are used both for anticipating actions to be taken 'before' proceeding with a task as well as for applying real-time corrective measures 'during' the execution of a in order to ensure a successful performance. Additionally, this thesis investigates a second component to identify the current environment among a set of known environments. This in turn allows the robot to select the proper compliance controller. The third component of the architecture presents the use of neuroevolutionary techniques for selecting the optimal parameters of the interaction controller once a certain environment has been identified

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Balancing the playing field: collaborative gaming for physical training.

    Get PDF
    BACKGROUND: Multiplayer video games promoting exercise-based rehabilitation may facilitate motor learning, by increasing motivation through social interaction. However, a major design challenge is to enable meaningful inter-subject interaction, whilst allowing for significant skill differences between players. We present a novel motor-training paradigm that allows real-time collaboration and performance enhancement, across a wide range of inter-subject skill mismatches, including disabled vs. able-bodied partnerships. METHODS: A virtual task consisting of a dynamic ball on a beam, is controlled at each end using independent digital force-sensing handgrips. Interaction is mediated through simulated physical coupling and locally-redundant control. Game performance was measured in 16 healthy-healthy and 16 patient-expert dyads, where patients were hemiparetic stroke survivors using their impaired arm. Dual-player was compared to single-player performance, in terms of score, target tracking, stability, effort and smoothness; and questionnaires probing user-experience and engagement. RESULTS: Performance of less-able subjects (as ranked from single-player ability) was enhanced by dual-player mode, by an amount proportionate to the partnership's mismatch. The more abled partners' performances decreased by a similar amount. Such zero-sum interactions were observed for both healthy-healthy and patient-expert interactions. Dual-player was preferred by the majority of players independent of baseline ability and subject group; healthy subjects also felt more challenged, and patients more skilled. CONCLUSION: This is the first demonstration of implicit skill balancing in a truly collaborative virtual training task leading to heightened engagement, across both healthy subjects and stroke patients
    • …
    corecore