529 research outputs found

    More Than a Feeling: Learning to Grasp and Regrasp using Vision and Touch

    Full text link
    For humans, the process of grasping an object relies heavily on rich tactile feedback. Most recent robotic grasping work, however, has been based only on visual input, and thus cannot easily benefit from feedback after initiating contact. In this paper, we investigate how a robot can learn to use tactile information to iteratively and efficiently adjust its grasp. To this end, we propose an end-to-end action-conditional model that learns regrasping policies from raw visuo-tactile data. This model -- a deep, multimodal convolutional network -- predicts the outcome of a candidate grasp adjustment, and then executes a grasp by iteratively selecting the most promising actions. Our approach requires neither calibration of the tactile sensors, nor any analytical modeling of contact forces, thus reducing the engineering effort required to obtain efficient grasping policies. We train our model with data from about 6,450 grasping trials on a two-finger gripper equipped with GelSight high-resolution tactile sensors on each finger. Across extensive experiments, our approach outperforms a variety of baselines at (i) estimating grasp adjustment outcomes, (ii) selecting efficient grasp adjustments for quick grasping, and (iii) reducing the amount of force applied at the fingers, while maintaining competitive performance. Finally, we study the choices made by our model and show that it has successfully acquired useful and interpretable grasping behaviors.Comment: 8 pages. Published on IEEE Robotics and Automation Letters (RAL). Website: https://sites.google.com/view/more-than-a-feelin

    The implications of embodiment for behavior and cognition: animal and robotic case studies

    Full text link
    In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. 'intelligence requires a body', the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. A number of case studies are presented to illustrate the concept. These involve animals and robots and are concentrated around locomotion, grasping, and visual perception. A theoretical scheme that can be used to embed the diverse case studies will be presented. Finally, we will establish a link between the low-level sensory-motor processes and cognition. We will present an embodied view on categorization, and propose the concepts of 'body schema' and 'forward models' as a natural extension of the embodied approach toward first representations.Comment: Book chapter in W. Tschacher & C. Bergomi, ed., 'The Implications of Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-5

    Sensing and Control for Robust Grasping with Simple Hardware

    Get PDF
    Robots can move, see, and navigate in the real world outside carefully structured factories, but they cannot yet grasp and manipulate objects without human intervention. Two key barriers are the complexity of current approaches, which require complicated hardware or precise perception to function effectively, and the challenge of understanding system performance in a tractable manner given the wide range of factors that impact successful grasping. This thesis presents sensors and simple control algorithms that relax the requirements on robot hardware, and a framework to understand the capabilities and limitations of grasping systems.Engineering and Applied Science

    Active Shape Completion Using Tactile Glances

    Get PDF
    One longstanding challenge in the field of robotics has been the robust and reliable grasping of objects of unknown shape. Part of that challenge lies in reconstructing the object's shape using only limited observations. Most approaches use either visual or tactile information to reconstruct the shape, having to face issues resulting from the limitations of the chosen modality. This thesis tries to combine the strengths of visual and tactile observations by taking the result from an existing visual approach and refining that result through sparse tactile glances. The existing approach produces potential shape hypotheses in voxel space which get combined into one final shape. This thesis takes that final shape and determines voxels of interest using either entropy or variance. These voxels will be targeted by the exploration, providing information about these voxels. This information will be used to assign weights to the original hypotheses in order for the combined shape to better fit the observations. All explorations are simulated and evaluated in MATLAB. The resulting shapes are evaluated based on their Jaccard Index with the ground truth model. The algorithm leads to improvements in the Jaccard Index, but not to drastically different looking shapes
    • …
    corecore