19,391 research outputs found

    Blind Demixing for Low-Latency Communication

    Full text link
    In the next generation wireless networks, lowlatency communication is critical to support emerging diversified applications, e.g., Tactile Internet and Virtual Reality. In this paper, a novel blind demixing approach is developed to reduce the channel signaling overhead, thereby supporting low-latency communication. Specifically, we develop a low-rank approach to recover the original information only based on a single observed vector without any channel estimation. Unfortunately, this problem turns out to be a highly intractable non-convex optimization problem due to the multiple non-convex rankone constraints. To address the unique challenges, the quotient manifold geometry of product of complex asymmetric rankone matrices is exploited by equivalently reformulating original complex asymmetric matrices to the Hermitian positive semidefinite matrices. We further generalize the geometric concepts of the complex product manifolds via element-wise extension of the geometric concepts of the individual manifolds. A scalable Riemannian trust-region algorithm is then developed to solve the blind demixing problem efficiently with fast convergence rates and low iteration cost. Numerical results will demonstrate the algorithmic advantages and admirable performance of the proposed algorithm compared with the state-of-art methods.Comment: 14 pages, accepted by IEEE Transaction on Wireless Communicatio

    A second derivative SQP method: local convergence

    Get PDF
    In [19], we gave global convergence results for a second-derivative SQP method for minimizing the exact ℓ1-merit function for a fixed value of the penalty parameter. To establish this result, we used the properties of the so-called Cauchy step, which was itself computed from the so-called predictor step. In addition, we allowed for the computation of a variety of (optional) SQP steps that were intended to improve the efficiency of the algorithm. \ud \ud Although we established global convergence of the algorithm, we did not discuss certain aspects that are critical when developing software capable of solving general optimization problems. In particular, we must have strategies for updating the penalty parameter and better techniques for defining the positive-definite matrix Bk used in computing the predictor step. In this paper we address both of these issues. We consider two techniques for defining the positive-definite matrix Bk—a simple diagonal approximation and a more sophisticated limited-memory BFGS update. We also analyze a strategy for updating the penalty paramter based on approximately minimizing the ℓ1-penalty function over a sequence of increasing values of the penalty parameter.\ud \ud Algorithms based on exact penalty functions have certain desirable properties. To be practical, however, these algorithms must be guaranteed to avoid the so-called Maratos effect. We show that a nonmonotone varient of our algorithm avoids this phenomenon and, therefore, results in asymptotically superlinear local convergence; this is verified by preliminary numerical results on the Hock and Shittkowski test set

    Manifold Optimization Over the Set of Doubly Stochastic Matrices: A Second-Order Geometry

    Get PDF
    Convex optimization is a well-established research area with applications in almost all fields. Over the decades, multiple approaches have been proposed to solve convex programs. The development of interior-point methods allowed solving a more general set of convex programs known as semi-definite programs and second-order cone programs. However, it has been established that these methods are excessively slow for high dimensions, i.e., they suffer from the curse of dimensionality. On the other hand, optimization algorithms on manifold have shown great ability in finding solutions to nonconvex problems in reasonable time. This paper is interested in solving a subset of convex optimization using a different approach. The main idea behind Riemannian optimization is to view the constrained optimization problem as an unconstrained one over a restricted search space. The paper introduces three manifolds to solve convex programs under particular box constraints. The manifolds, called the doubly stochastic, symmetric and the definite multinomial manifolds, generalize the simplex also known as the multinomial manifold. The proposed manifolds and algorithms are well-adapted to solving convex programs in which the variable of interest is a multidimensional probability distribution function. Theoretical analysis and simulation results testify the efficiency of the proposed method over state of the art methods. In particular, they reveal that the proposed framework outperforms conventional generic and specialized solvers, especially in high dimensions

    Global rates of convergence for nonconvex optimization on manifolds

    Full text link
    We consider the minimization of a cost function ff on a manifold MM using Riemannian gradient descent and Riemannian trust regions (RTR). We focus on satisfying necessary optimality conditions within a tolerance ε\varepsilon. Specifically, we show that, under Lipschitz-type assumptions on the pullbacks of ff to the tangent spaces of MM, both of these algorithms produce points with Riemannian gradient smaller than ε\varepsilon in O(1/ε2)O(1/\varepsilon^2) iterations. Furthermore, RTR returns a point where also the Riemannian Hessian's least eigenvalue is larger than −ε-\varepsilon in O(1/ε3)O(1/\varepsilon^3) iterations. There are no assumptions on initialization. The rates match their (sharp) unconstrained counterparts as a function of the accuracy ε\varepsilon (up to constants) and hence are sharp in that sense. These are the first deterministic results for global rates of convergence to approximate first- and second-order Karush-Kuhn-Tucker points on manifolds. They apply in particular for optimization constrained to compact submanifolds of Rn\mathbb{R}^n, under simpler assumptions.Comment: 33 pages, IMA Journal of Numerical Analysis, 201
    • …
    corecore