577 research outputs found

    What Can We Learn Privately?

    Full text link
    Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms.Comment: 35 pages, 2 figure

    Heavy Hitters and the Structure of Local Privacy

    Full text link
    We present a new locally differentially private algorithm for the heavy hitters problem which achieves optimal worst-case error as a function of all standardly considered parameters. Prior work obtained error rates which depend optimally on the number of users, the size of the domain, and the privacy parameter, but depend sub-optimally on the failure probability. We strengthen existing lower bounds on the error to incorporate the failure probability, and show that our new upper bound is tight with respect to this parameter as well. Our lower bound is based on a new understanding of the structure of locally private protocols. We further develop these ideas to obtain the following general results beyond heavy hitters. \bullet Advanced Grouposition: In the local model, group privacy for kk users degrades proportionally to k\approx \sqrt{k}, instead of linearly in kk as in the central model. Stronger group privacy yields improved max-information guarantees, as well as stronger lower bounds (via "packing arguments"), over the central model. \bullet Building on a transformation of Bassily and Smith (STOC 2015), we give a generic transformation from any non-interactive approximate-private local protocol into a pure-private local protocol. Again in contrast with the central model, this shows that we cannot obtain more accurate algorithms by moving from pure to approximate local privacy

    The Role of Interactivity in Local Differential Privacy

    Full text link
    We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful. We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor k1k \geq 1 by which the sum of a protocol's single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive kk-compositional protocol into an equivalent sequentially interactive protocol with an O(k)O(k) blowup in sample complexity. Next, we show that our reduction is tight by exhibiting a family of problems such that for any kk, there is a fully interactive kk-compositional protocol which solves the problem, while no sequentially interactive protocol can solve the problem without at least an Ω~(k)\tilde \Omega(k) factor more examples. We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems --- which include all simple hypothesis testing problems as a special case --- a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests

    How NOT to Build an Infinite Lottery Machine

    Get PDF
    The sustained failure of efforts to design an infinite lottery machine using ordinary probabilistic randomizers is traced back to a problem familiar to set theorists: we have no constructive prescriptions for probabilistically non- measurable sets. Yet construction of such sets is required if we are to be able to read the result of an infinite lottery machine that is built from ordinary probabilistic randomizers. All such designs face a dilemma: they can provide an accessible (readable) result with probability zero; or an inaccessible result with probability greater than zero

    Fast and Efficient Compressive Sensing using Structurally Random Matrices

    Get PDF
    This paper introduces a new framework of fast and efficient sensing matrices for practical compressive sensing, called Structurally Random Matrix (SRM). In the proposed framework, we pre-randomize a sensing signal by scrambling its samples or flipping its sample signs and then fast-transform the randomized samples and finally, subsample the transform coefficients as the final sensing measurements. SRM is highly relevant for large-scale, real-time compressive sensing applications as it has fast computation and supports block-based processing. In addition, we can show that SRM has theoretical sensing performance comparable with that of completely random sensing matrices. Numerical simulation results verify the validity of the theory as well as illustrate the promising potentials of the proposed sensing framework
    corecore