180 research outputs found

    Development of a 2-DoF Ankle Exoskeleton

    Get PDF

    A Review of Lower Limb Exoskeletons

    Get PDF
    In general, exoskeletons are defined as wearable robotic mechanisms for providing mobility. In the last six decades, many research work have been achieved to enhance the performance of exoskeletons thus developing them to nearly commercialized products. In this paper, a review is made for the lower limb exoskeleton concerning history, classification, selection and development, also a discussion for the most important aspects of comparison between different designs is presented. Further, some concluding remarks are withdrawn which could be useful for future work. Keywords: Exoskeletons, Lower extremity exoskeleton, Wearable robot

    Kinematics and Robot Design IV, KaRD2021

    Get PDF
    This volume collects the papers published on the special issue “Kinematics and Robot Design IV, KaRD2021” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2021), which is the forth edition of the KaRD special-issue series, hosted by the open-access journal “MDPI Robotics”. KaRD series is an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2021, after the peer-review process, accepted 12 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Rehabilitation Technologies: Biomechatronics Point of View

    Get PDF

    Inverse Modeling of Human Knee Joint Based on Geometry and Vision Systems for Exoskeleton Applications

    Get PDF
    Current trends in Robotics aim to close the gap that separates technology and humans, bringing novel robotic devices in order to improve human performance. Although robotic exoskeletons represent a breakthrough in mobility enhancement, there are design challenges related to the forces exerted to the users’ joints that result in severe injuries. This occurs due to the fact that most of the current developments consider the joints as noninvariant rotational axes. This paper proposes the use of commercial vision systems in order to perform biomimetic joint design for robotic exoskeletons. This work proposes a kinematic model based on irregular shaped cams as the joint mechanism that emulates the bone-to-bone joints in the human body. The paper follows a geometric approach for determining the location of the instantaneous center of rotation in order to design the cam contours. Furthermore, the use of a commercial vision system is proposed as the main measurement tool due to its noninvasive feature and for allowing subjects under measurement to move freely. The application of this method resulted in relevant information about the displacements of the instantaneous center of rotation at the human knee joint

    Mechatronic Design of a Lower Limb Exoskeleton

    Get PDF
    This chapter presents a lower limb exoskeleton mechatronic design. The design aims to be used as a walking support device focused on patients who suffer of partial lower body paralysis due to spine injuries or caused by a stroke. First, the mechanical design is presented and the results are validated through dynamical simulations performed in Autodesk Inventor and MATLAB. Second, a communication network design is proposed in order to establish a secure and fast data link between sensors, actuators, and microprocessors. Finally, patient‐exoskeleton system interaction is presented and detailed. Movement generation is performed by means of digital signal processing techniques applied to electromyography (EMG) and electrocardiography (EEG) signals. Such interaction system design is tested and evaluated in MATLAB whose results are presented and explained. A proposal of real‐time supervisory control is also presented as a part of the integration of every component of the exoskeleton

    User-Centered Modelling and Design of Assistive Exoskeletons

    Get PDF
    • 

    corecore