1,615 research outputs found

    Time-parallel iterative solvers for parabolic evolution equations

    Get PDF
    We present original time-parallel algorithms for the solution of the implicit Euler discretization of general linear parabolic evolution equations with time-dependent self-adjoint spatial operators. Motivated by the inf-sup theory of parabolic problems, we show that the standard nonsymmetric time-global system can be equivalently reformulated as an original symmetric saddle-point system that remains inf-sup stable with respect to the same natural parabolic norms. We then propose and analyse an efficient and readily implementable parallel-in-time preconditioner to be used with an inexact Uzawa method. The proposed preconditioner is non-intrusive and easy to implement in practice, and also features the key theoretical advantages of robust spectral bounds, leading to convergence rates that are independent of the number of time-steps, final time, or spatial mesh sizes, and also a theoretical parallel complexity that grows only logarithmically with respect to the number of time-steps. Numerical experiments with large-scale parallel computations show the effectiveness of the method, along with its good weak and strong scaling properties

    A multigrid perspective on the parallel full approximation scheme in space and time

    Full text link
    For the numerical solution of time-dependent partial differential equations, time-parallel methods have recently shown to provide a promising way to extend prevailing strong-scaling limits of numerical codes. One of the most complex methods in this field is the "Parallel Full Approximation Scheme in Space and Time" (PFASST). PFASST already shows promising results for many use cases and many more is work in progress. However, a solid and reliable mathematical foundation is still missing. We show that under certain assumptions the PFASST algorithm can be conveniently and rigorously described as a multigrid-in-time method. Following this equivalence, first steps towards a comprehensive analysis of PFASST using block-wise local Fourier analysis are taken. The theoretical results are applied to examples of diffusive and advective type

    Multigrid Waveform Relaxation on Spatial Finite Element Meshes: The Discrete-Time Case

    Get PDF
    The efficiency of numerically solving time-dependent partial differential equations on parallel computers can be greatly improved by computing the solution on many time levels simultaneously. The theoretical properties of one such method, namely the discrete-time multigrid waveform relaxation method, are investigated for systems of ordinary differential equations obtained by spatial finite-element discretisation of linear parabolic initial-boundary value problems. The results are compared to the corresponding continuous-time results. The theory is illustrated for a one-dimensional and a two-dimensional model problem and checked against results obtained by numerical experiments

    Multilevel convergence analysis of multigrid-reduction-in-time

    Full text link
    This paper presents a multilevel convergence framework for multigrid-reduction-in-time (MGRIT) as a generalization of previous two-grid estimates. The framework provides a priori upper bounds on the convergence of MGRIT V- and F-cycles, with different relaxation schemes, by deriving the respective residual and error propagation operators. The residual and error operators are functions of the time stepping operator, analyzed directly and bounded in norm, both numerically and analytically. We present various upper bounds of different computational cost and varying sharpness. These upper bounds are complemented by proposing analytic formulae for the approximate convergence factor of V-cycle algorithms that take the number of fine grid time points, the temporal coarsening factors, and the eigenvalues of the time stepping operator as parameters. The paper concludes with supporting numerical investigations of parabolic (anisotropic diffusion) and hyperbolic (wave equation) model problems. We assess the sharpness of the bounds and the quality of the approximate convergence factors. Observations from these numerical investigations demonstrate the value of the proposed multilevel convergence framework for estimating MGRIT convergence a priori and for the design of a convergent algorithm. We further highlight that observations in the literature are captured by the theory, including that two-level Parareal and multilevel MGRIT with F-relaxation do not yield scalable algorithms and the benefit of a stronger relaxation scheme. An important observation is that with increasing numbers of levels MGRIT convergence deteriorates for the hyperbolic model problem, while constant convergence factors can be achieved for the diffusion equation. The theory also indicates that L-stable Runge-Kutta schemes are more amendable to multilevel parallel-in-time integration with MGRIT than A-stable Runge-Kutta schemes.Comment: 26 pages; 17 pages Supplementary Material
    • …
    corecore